留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

频域特征叠加时域突变的乘性模型预测电离层TEC方法

王帅 全林 王鲲鹏 李泠 苑刚 康丽华

王帅, 全林, 王鲲鹏, 李泠, 苑刚, 康丽华. 频域特征叠加时域突变的乘性模型预测电离层TEC方法[J]. 空间科学学报. doi: 10.11728/cjss2025.05.2024-0123
引用本文: 王帅, 全林, 王鲲鹏, 李泠, 苑刚, 康丽华. 频域特征叠加时域突变的乘性模型预测电离层TEC方法[J]. 空间科学学报. doi: 10.11728/cjss2025.05.2024-0123
WANG Shuai, QUAN Lin, WANG Kunpeng, LI Ling, YUAN Gang, KANG Lihua. A Multiplicative Model with Frequency-domain Features Superimposed on Time-domain Mutations for Predicting Ionospheric TEC Methods (in Chinese). Chinese Journal of Space Science, 2025, 45(6): 1439-1450 doi: 10.11728/cjss2025.05.2024-0123
Citation: WANG Shuai, QUAN Lin, WANG Kunpeng, LI Ling, YUAN Gang, KANG Lihua. A Multiplicative Model with Frequency-domain Features Superimposed on Time-domain Mutations for Predicting Ionospheric TEC Methods (in Chinese). Chinese Journal of Space Science, 2025, 45(6): 1439-1450 doi: 10.11728/cjss2025.05.2024-0123

频域特征叠加时域突变的乘性模型预测电离层TEC方法

doi: 10.11728/cjss2025.05.2024-0123 cstr: 32142.14.cjss.2024-0123
详细信息
    作者简介:
    • 王帅 男, 1991年出生于湖北省襄阳市, 现为航天工程大学航天信息学院讲师, 主要研究方向为电离层探测与分析预报、空间环境探测设备设计等. E-mail: mage1120@foxmail.com
    通讯作者:
    • 全林 男, 1975年出生于湖北省仙桃市, 现为北京跟踪与通信技术研究所研究员, 主要研究方向为空间环境监测体系设计、航天器辐射效应及防护等. E-mail: jlxsd@163.com
  • 中图分类号: V419

A Multiplicative Model with Frequency-domain Features Superimposed on Time-domain Mutations for Predicting Ionospheric TEC Methods

  • 摘要: 电离层总电子含量(TEC)是电离层的重要特征参数, 对导航误差修正等应用有较大影响, 但是目前的电离层TEC预报精度无法完全满足需求, 尤其在太阳风暴期间的精度和提前量方面存在不足. 针对区域电离层TEC预报需要, 综合考虑电离层TEC的频域和时域特性, 根据电离层TEC的变化受太阳活动影响存在趋势性、周期性和突发性的特征, 在分析太阳活动高低年趋势的基础上, 在频域用多个周期长度解析电离层TEC变化, 在时域上考虑地磁暴等因素对电离层TEC的突发性影响, 将扰动暴时(Dst)指数、经纬度作为输入参数, 对各个区域磁层–电离层耦合情况进行特异性建模. 实验结果表明, 在地磁平静时期中纬度地区, 本文方法在太阳活动低年7天预报值的均方根误差(RMSE)优于1.262总电子含量单位(TECU), 1天预报值的RMSE优于1.094 TECU, 在太阳活动高年7天预报值的RMSE优于2.771 TECU. 在地磁活跃时期, 7天预报值的RMSE优于4.186 TECU, 1天预报值的RMSE优于4.115 TECU. 本文建立了具备7天提前量的预报模型, 方法在预报精度和时效方面表现良好.

     

  • 图  1  地磁平静期间得到的7天预测值与真实值

    Figure  1.  7-day forecast values and the actual values during the geomagnetic quiet period

    图  2  地磁活跃期间得到的预测值与真实值

    Figure  2.  Forecast values and the actual values during the geomagnetic activity period

    图  3  地磁平静期间得到的7天预测值与真实值

    Figure  3.  7-day forecast values and the actual values during the geomagnetic quiet period

    图  4  2016年1月20-26日连续7天的Dst指数

    Figure  4.  Dst for 7 consecutive days from 20 to 26 January 2016

    图  5  地磁活跃期间得到的7天预测值与真实值

    Figure  5.  7-day forecast values and the actual values during the geomagnetic active period

    图  6  地磁活跃期间得到的预测值与真实值

    Figure  6.  Forecast values and the actual values during the geomagnetic active period

    表  1  对武汉等4地TEC的各种预测方法结果对比

    Table  1.   Comparison of various prediction methods for TEC in Wuhan and other four regions

    地区 方法 ρ RMSE/TECU MAE/TECU R2
    武汉 本文算法 0.971 0.942 0.711 0.926
    LSTM 0.843 1.936 1.458 0.724
    IRI 2016 0.899 3.074 2.610 0.207
    IGS预测 0.957 1.341 1.027 0.849
    上海 本文算法 0.973 0.907 0.699 0.932
    LSTM 0.710 2.906 1.999 0.302
    IRI 2016 0.891 3.224 2.739 0.141
    IGS预测 0.961 1.291 1.019 0.862
    北京 本文算法 0.949 1.058 0.788 0.871
    LSTM 0.968 1.243 1.082 0.820
    IRI 2016 0.673 2.380 1.891 0.343
    IGS预测 0.964 0.999 0.800 0.884
    广州 本文算法 0.958 1.262 0.945 0.915
    LSTM 0.919 2.801 2.331 0.578
    IRI 2016 0.922 4.545 4.101 0
    IGS预测 0.957 1.586 1.215 0.865
    下载: 导出CSV

    表  2  对武汉等4地TEC的各种预测方法结果对比

    Table  2.   Comparison of various prediction methods for TEC in Wuhan and other four regions

    地区 方法 ρ RMSE/TECU MAE/TECU R2
    武汉 本文算法 0.992 0.560 0.434 0.973
    LSTM 0.758 2.096 1.724 0.419
    IRI 2016 0.904 3.002 2.433 0.274
    IGS预测 0.988 1.006 0.871 0.918
    上海 本文算法 0.992 0.638 0.504 0.969
    LSTM 0.906 1.717 1.266 0.618
    IRI 2016 0.901 3.048 2.512 0.283
    IGS预测 0.988 1.074 0.942 0.911
    北京 本文算法 0.948 1.094 0.825 0.846
    LSTM 0.876 2.278 1.862 0.370
    IRI 2016 0.641 2.393 1.975 0.263
    IGS预测 0.980 1.011 0.888 0.868
    广州 本文算法 0.990 0.721 0.588 0.972
    LSTM 0.895 3.106 2.349 0.174
    IRI 2016 0.963 4.149 3.796 0.057
    IGS预测 0.992 1.029 0.863 0.941
    下载: 导出CSV

    表  3  对武汉、上海、北京、广州四个地区TEC的各种预测方法结果对比

    Table  3.   Comparison of various prediction methods for TEC in Wuhan Shanghai Beijing and Guangzhou four regions

    地区 方法 ρ RMSE/TECU MAE/TECU R2
    武汉 本文算法 0.988 1.822 1.442 0.981
    LSTM 0.899 5.466 3.803 0.779
    IRI 2016 0.968 3.103 2.502 0.929
    IGS预测 0.984 2.145 1.690 0.966
    上海 本文算法 0.988 1.744 1.395 0.983
    LSTM 0.808 7.603 5.458 0.558
    IRI 2016 0.966 3.187 2.584 0.922
    IGS预测 0.983 2.181 1.643 0.964
    北京 本文算法 0.982 2.636 1.957 0.964
    LSTM 0.837 9.957 6.761 0.434
    IRI 2016 0.964 4.335 3.673 0.893
    IGS预测 0.980 2.904 1.951 0.952
    广州 本文算法 0.980 2.771 2.208 0.951
    LSTM 0.913 7.718 6.972 0.660
    IRI 2016 0.849 7.916 5.823 0.582
    IGS预测 0.971 3.128 2.324 0.935
    下载: 导出CSV

    表  4  对武汉、上海、北京、广州四个地区TEC的各种预测方法结果对比

    Table  4.   Comparison of various prediction methods for TEC in Wuhan Shanghai Beijing and Guangzhou four regions

    地区 方法 ρ RMSE/TECU MAE/TECU R2
    武汉 本文算法 0.923 2.944 2.216 0.804
    LSTM 0.793 4.816 3.921 0.473
    IRI 2016 0.785 6.293 5.181 0.101
    IGS预测 0.835 4.092 2.961 0.620
    上海 本文算法 0.941 3.183 2.425 0.751
    LSTM 0.673 5.612 4.221 0.113
    IRI 2016 0.798 6.393 5.396 0
    IGS预测 0.838 3.982 2.895 0.611
    北京 本文算法 0.879 3.700 2.924 0.491
    LSTM 0.820 4.773 3.852 0
    IRI 2016 0.721 4.690 3.644 0.182
    IGS预测 0.884 2.531 1.863 0.761
    广州 本文算法 0.912 4.186 3.448 0.751
    LSTM 0.529 16.553 14.937 0
    IRI 2016 0.835 8.043 6.772 0.078
    IGS预测 0.884 2.530 1.863 0.884
    下载: 导出CSV

    表  5  对武汉、上海、北京、广州四个地区TEC的各种预测方法结果对比

    Table  5.   Comparison of various prediction methods for TEC in Wuhan Shanghai Beijing and Guangzhou four regions

    地区 方法 ρ RMSE/TECU MAE/TECU R2
    武汉 本文算法 0.966 1.911 1.610 0.832
    LSTM 0.034 9.125 6.970 0
    IRI 2016 0.887 6.761 5.533 0
    IGS预测 0.966 5.408 4.538 0
    上海 本文算法 0.962 1.861 1.507 0.866
    LSTM 0.134 5.215 4.231 0.153
    IRI 2016 0.899 6.768 5.413 0
    IGS预测 0.945 5.337 4.592 0
    北京 本文算法 0.878 3.091 2.292 0.554
    LSTM 0.413 7.553 6.023 0
    IRI 2016 0.688 4.926 4.038 0
    IGS预测 0.981 2.256 1.850 0.762
    广州 本文算法 0.975 4.115 3.506 0.583
    LSTM 0.527 15.184 13.535 0
    IRI 2016 0.957 8.480 7.354 0
    IGS预测 0.980 2.255 1.85 0.762
    下载: 导出CSV
  • [1] YUAN Tianjiao, CHEN Yanhong, LIU Siqing, et al. Prediction model for ionospheric total electron content based on deep learning recurrent neural network[J]. Chinese Journal of Space Science, 2018, 38(1): 48-57 (袁天娇, 陈艳红, 刘四清, 等. 基于深度学习递归神经网络的电离层总电子含量经验预报模型[J]. 空间科学学报, 2018, 38(1): 48-57 doi: 10.11728/cjss2018.01.048

    YUAN Tianjiao, CHEN Yanhong, LIU Siqing, et al. Prediction model for ionospheric total electron content based on deep learning recurrent neural network[J]. Chinese Journal of Space Science, 2018, 38(1): 48-57 doi: 10.11728/cjss2018.01.048
    [2] ZHAI Dulin, ZHANG Xuemin, XIONG Pan, et al. Detection of ionospheric TEC anomalies based on Prophet Time-series Forecasting Model[J]. Earthquake, 2019, 39(2): 46-62 (翟笃林, 张学民, 熊攀, 等. Prophet 时序预测模型在电离层TEC异常探测中的应用[J]. 地震, 2019, 39(2): 46-62 doi: 10.3969/j.issn.1000-3274.2019.02.006

    ZHAI Dulin, ZHANG Xuemin, XIONG Pan, et al. Detection of ionospheric TEC anomalies based on Prophet Time-series Forecasting Model[J]. Earthquake, 2019, 39(2): 46-62 doi: 10.3969/j.issn.1000-3274.2019.02.006
    [3] CHEN Yanhong, WAN Weixing, LIU Libo, et al. A statistical tec model based on the observation at Wuhan ionospheric observatory[J]. Earthquake, 2002, 22(1): 27-35 (陈艳红, 万卫星, 刘立波, 等. 武汉地区电离层电子浓度总含量的统计经验模式研究[J]. 空间科学学报, 2002, 22(1): 27-35 doi: 10.3969/j.issn.0254-6124.2002.01.005

    CHEN Yanhong, WAN Weixing, LIU Libo, et al. A statistical tec model based on the observation at Wuhan ionospheric observatory[J]. Earthquake, 2002, 22(1): 27-35 doi: 10.3969/j.issn.0254-6124.2002.01.005
    [4] TANG Siyu, HUANG Zhi. Prediction of ionospheric total electron content based on causal convolutional and LSTM network[J]. Chinese Journal of Space Science, 2022, 42(3): 357-365 (唐丝语, 黄智. 基于因果卷积与LSTM网络的电离层总电子含量预报[J]. 空间科学学报, 2022, 42(3): 357-365 doi: 10.11728/cjss2022.03.210401042

    TANG Siyu, HUANG Zhi. Prediction of ionospheric total electron content based on causal convolutional and LSTM network[J]. Chinese Journal of Space Science, 2022, 42(3): 357-365 doi: 10.11728/cjss2022.03.210401042
    [5] XIONG Bo, LI Xiaolin, WANG Yuqing, et al. Prediction of ionospheric TEC over China based on long and short-term memory neural network[J]. Chinese Journal of Geophysics, 2022, 65(7): 2365-2377 (熊波, 李肖霖, 王宇晴, 等. 基于长短时记忆神经网络的中国地区电离层TEC预测[J]. 地球物理学报, 2022, 65(7): 2365-2377 doi: 10.6038/cjg2022P0557

    XIONG Bo, LI Xiaolin, WANG Yuqing, et al. Prediction of ionospheric TEC over China based on long and short-term memory neural network[J]. Chinese Journal of Geophysics, 2022, 65(7): 2365-2377 doi: 10.6038/cjg2022P0557
    [6] HUANG Z, YUAN H. Ionospheric single-station TEC short-term forecast using RBF neural network[J]. Radio Science, 2014, 49(4): 283-292 doi: 10.1002/2013RS005247
    [7] TANG Jun, GAO Xin. Prediction models of ionospheric TEC by Elman neural network with Bayesian regularization[J]. Journal of Geodesy and Geodynamics, 2020, 40(8): 799-805 (汤俊, 高鑫. 贝叶斯正则化的Elman神经网络电离层TEC预报模型[J]. 大地测量与地球动力学, 2020, 40(8): 799-805

    TANG Jun, GAO Xin. Prediction models of ionospheric TEC by Elman neural network with Bayesian regularization[J]. Journal of Geodesy and Geodynamics, 2020, 40(8): 799-805
    [8] WEN Z C, LI S H, LI L H, et al. Ionospheric TEC prediction using Long Short-Term Memory deep learning network[J]. Astrophysics and Space Science, 2021, 366(1): 3 doi: 10.1007/s10509-020-03907-1
    [9] RUWALI A, KUMAR A J S, PRAKASH K B, et al. Implementation of hybrid deep learning model (LSTM-CNN) for ionospheric TEC forecasting using GPS data[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18(6): 1004-1008 doi: 10.1109/LGRS.2020.2992633
    [10] SRIVANI I, PRASAD G S V, RATNAM D V. A deep learning-based approach to forecast ionospheric delays for GPS signals[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(8): 1180-1184 doi: 10.1109/LGRS.2019.2895112
    [11] Shaikh M M, Butt R A, Khawaja A. Forecasting Total Electron Content (TEC) using CEEMDAN LSTM model[J]. Advances in Space Research, 2023, 71(10): 4361-4373 doi: 10.1016/j.asr.2022.12.054
    [12] KASELIMI M, VOULODIMOS A, DOULAMIS N, et al. A causal long short-term memory sequence to sequence model for TEC prediction using GNSS observations[J]. Remote Sensing, 2020, 12(9): 1354 doi: 10.3390/rs12091354
    [13] LIU Lilong, CHEN Yutian, LI Junyu, et al. Short-term prediction and applicability analysis of regional ionospheric total electron content in active period[J]. Geomatics and Information Science of Wuhan University, 2019, 44(12): 1757-1764 (刘立龙, 陈雨田, 黎峻宇, 等. 活跃期区域电离层总电子短期预报及适用性分析[J]. 武汉大学学报(信息科学版), 2019, 44(12): 1757-1764

    LIU Lilong, CHEN Yutian, LI Junyu, et al. Short-term prediction and applicability analysis of regional ionospheric total electron content in active period[J]. Geomatics and Information Science of Wuhan University, 2019, 44(12): 1757-1764
    [14] SONG R, ZHANG X M, ZHOU C, et al. Predicting TEC in China based on the neural networks optimized by genetic algorithm[J]. Advances in Space Research, 2018, 62(4): 745-759 doi: 10.1016/j.asr.2018.03.043
    [15] PEREZ R O. Using tensor flow-based neural network to estimate GNSS single frequency ionospheric delay (IONONet)[J]. Advances in Space Research, 2019, 63(5): 1607-1618 doi: 10.1016/j.asr.2018.11.011
    [16] CHEN Z, JIN M W, DENG Y, et al. Improvement of a deep learning algorithm for total electron content maps: Image completion[J]. Journal of Geophysical Research: Space Physics, 2019, 124(1): 790-800 doi: 10.1029/2018JA026167
    [17] LIAO Zhanghui, WU Beiping, SHEN Xinglin, et al. Analysis of ionospheric VTEC temporal-spatial characteristics in Guangxi and surrounding[J]. Science of Surveying and Mapping, 2018, 43(9): 40-45,62 (廖章回, 吴北平, 申兴林, 等. 广西及周边地区电离层时空特性分析[J]. 测绘科学, 2018, 43(9): 40-45,62

    LIAO Zhanghui, WU Beiping, SHEN Xinglin, et al. Analysis of ionospheric VTEC temporal-spatial characteristics in Guangxi and surrounding[J]. Science of Surveying and Mapping, 2018, 43(9): 40-45,62
    [18] JI Changdong, WANG Qiang, WANG Guipeng, et al. TEC prediction of ionosphere based on deep learning LSTM model[J]. Journal of Navigation and Positioning, 2019, 7(3): 76-81 (吉长东, 王强, 王贵朋, 等. 深度学习 LSTM 模型的电离层总电子含量预报[J]. 导航定位学报, 2019, 7(3): 76-81 doi: 10.3969/j.issn.2095-4999.2019.03.013

    JI Changdong, WANG Qiang, WANG Guipeng, et al. TEC prediction of ionosphere based on deep learning LSTM model[J]. Journal of Navigation and Positioning, 2019, 7(3): 76-81 doi: 10.3969/j.issn.2095-4999.2019.03.013
    [19] TAYLOR S J, LETHAM B. Forecasting at scale[J]. The American Statistician, 2018, 72(1): 37-45 doi: 10.1080/00031305.2017.1380080
    [20] QUAN Lin, XUE Junchen, HU Xiaogong, et al. Performance of GPS single frequency standard point positioning in China during the main phase of different classified geomagnetic storms[J]. Chinese Journal of Geophysics, 2021, 64(9): 3030-3047 (全林, 薛军琛, 胡小工, 等. 中国区域 GPS 单频点定位在不同类型磁暴主相期间定位性能分析[J]. 地球物理学报, 2021, 64(9): 3030-3047 doi: 10.6038/cjg2021P0331

    QUAN Lin, XUE Junchen, HU Xiaogong, et al. Performance of GPS single frequency standard point positioning in China during the main phase of different classified geomagnetic storms[J]. Chinese Journal of Geophysics, 2021, 64(9): 3030-3047 doi: 10.6038/cjg2021P0331
    [21] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780 doi: 10.1162/neco.1997.9.8.1735
  • 加载中
图(6) / 表(5)
计量
  • 文章访问数:  369
  • HTML全文浏览量:  44
  • PDF下载量:  8
  • 被引次数: 

    0(来源:Crossref)

    0(来源:其他)

出版历程
  • 收稿日期:  2024-09-30
  • 修回日期:  2025-04-28
  • 网络出版日期:  2025-04-29

目录

    /

    返回文章
    返回