Impact of Geomagnetic Storms on L-band Ionospheric Scintillation Over Equatorial Region
-
摘要: 利用赤道地区Vamimo站闪烁数据, 选取两次典型大磁暴时段重点分析, 对比磁暴发生前、发生时以及发生后连续几天电离层幅度闪烁强度和发生率的变化, 引入瑞利elax-elax泰勒不稳定性(Rayleigh-Taylor, R-T不稳定性)线性增长率γ0, 对磁暴影响闪烁的机制进行初步探讨. 结果表明, 磁暴可能触发闪烁发生, 也可能抑制闪烁发生, 这既与观测季节有关, 也与磁暴不同发展阶段的地方时有关. 触发发生于闪烁少发季节磁暴主相所在的午夜至黎明时段, 可能是磁层穿透电离层的东向电场所致; 抑制发生于闪烁多发季节磁暴恢复相所在的午夜前时段, 可能是西向电场作用的结果. 磁暴发生时的电场变化可能是抑制或触发闪烁的主导因素, 但仍需进一步分析研究.Abstract: Using the observation data at Vanimo station, the amplitude scintillation intensity and the occurrence rate were analyzed during the two classic different strong magnetic storms. Mechanism of the magnetic storm influence on the scintillation was discussed preliminarily by Rayleigh-Taylor instability linear theory. The results show that the magnetic storm could either triggering or inhibiting the scintillation, which relates to the season and the local time of the different period of the magnetic storm. If the magnetic storm main phase occurs from midnight to dawn, the scintillation may be triggered by the eastern ward electrical field, and if the magnetic storm recovery phase takes place during the pre-midnight, it may be inhibited by the western ward electrical field. The electrical field variation during the magnetic storms is possibly the main factor that influence the scintillation, but it needs further study to prove.
-
[1] Yeh K C. Radio wave scintillations in the ionosphere[J]. Proc. IEEE, 1982, 70(4):324-360 [2] Aarons J. 50 years of radio-scintillation observations[J]. Aaten. Prop. Mag., 1997, 39(6):7-12 [3] Kelley M C. The Earth's ionosphere: Plasma physics and electrodynamics (International Geophysics Series)[J]. San Diego, CA: 43 Academic Press, 1989 [4] Fejer B G. Ionospheric irregularities[J]. J. Geophys. Res., 1997, 102:24047-24056 [5] Shang Sheping, Shi Jiankui, Guo Shanjian, et al. Morphological study of L-band ionospheric scintillation in the equatorial region[J]. Chin. J. Radio Sci., 2006, 21(3):410-415 [6] Zhu Taiping, Long Qili. Radio scintillations and spread-F at low-latitudes[J]. Chin. J. Radio Sci., 1995, 10(3):410-415 [7] Shang Sheping, Shi Jiankui, Guo Shanjian, et al. Ionospheric scintillation monitoring and preliminary statistic analysis over Hainan region[J]. Chin. J. Space Sci., 2005, 25(1):23-28 [8] Biktash L Z. The equatorial scintillation and space weather effects on its generation during geomagetic storms[C]//11th International Conference on Ionospheric Radio Systems and Techniques, Edinburgh, UK, 2009 [9] Xu Jisheng, Zhu Jie, Cheng Guanghui. GPS observations of ionospheric effects of the major storm of Nov.7-10, 2004[J]. Chin. J. Geophys., 2006, 49(4):950-956 [10] Luo Weihua, Xu Jisheng, Xu Liang. Analysis of controlling factors leading to the development of R-T instablity in equatorial ionosphere[J]. Chin. J. Geophys., 2009, 52(1):849-858 [11] Aarons J, Dasgupta A. Equatorial scintillations during the major magnetic storm of April 1981 [J]. Radio Sci., 1984, 731-739 [12] Basu S, Groves K M, et al. Response of the equatorial ionosphere in the South Atlantic region to the great magnetic storm of July 15, 2000[J]. Geophys. Res., 2000, 28(18):3577-3580 [13] Kumar S, Gwal A K. VHF ionospheric scintillation equatorial anomaly crest: solar and magnetic activity[J]. J. Atmos. Solar-Terr. Phys., 2000, 62(3):157-167 [14] Basu S. Ionospheric effects of major magnetic storm during the international space weather period of September and Octber 1999: GPS observations, VHF/UHF scintillation, and in situ density structures at middle and equatorial latitudes[J]. J. Geophys. Res., 2001, 106(A12):30389-30413 [15] Chandra H, Vyas G D, Pathan B M, et al. Spectral characteristics of magnetic storm-induced F-region scintillations extending into daytime[J]. J. Atmos. Terr. Phys., 1995, 57(11):1273-1285 [16] Li G Z, Ning B Q. Effects of geomagnetic storm on GPS ionospheric scintillations at Sanya[J]. J. Atmos. Solar Terr. Phys., 2008, 70:1034-1045 [17] Aarons J. The role of the ring current in the generation or inhibition of equatorial F layer irregularities during magnetic storm[J]. Radio Sci., 1991, 26(4):1131-1139. [18] Zou Y. Effects of the 4-20 April 2006 major geomagnetic storms on GPS ionospheric scintillations at Guilin[C]// 2009 3rd International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications. IEEE, 2009 [19] Shang S P. Response of Hainan GPS ionospheric scintillation to the different strong magnetic storm condition[J]. Adv. Space Res., 2008, 41(4):579-586 [20] LI G Z, Ning B Q. Observations of GPS ionospheric scintillations over Wuhan during geomagnetic storms[J]. Ann. Geophys., 2006, 24:1581-1590 [21] Bhattacharya S, Purohit P K, Tiwari R, et al. Study of GPS based ionospheric scintillation and its effects on dual frequency receiver[J]. J. Eng. Sci. Manag. Educ., 2010(1):55-61 [22] Jiao Weixin. Scinence of Space Weather[M]. Beijing: China Meteorological Press, 2003. 90-100 [23] Sultan P J. Linear theory and modeling of the Rayleigh-Taylor instability leading to the occurrence of equatorial spread F[J]. J. Geophys. Res., 1996, 101(A12):26875-26891 [24] Basu S. On the linear theory of equatorial study of the wind field effect on the growth and observations[J]. J. Geophys. Res., 2002, 107(A8):1199-1208 [25] Rezende de L F C, Paula de E R, et al. Study of ionospheric irregularities during intense magnetic storms[J]. Braz. J. Geophys., 2007, 25(2):152-158 -
-
计量
- 文章访问数: 3301
- HTML全文浏览量: 118
- PDF下载量: 1358
-
被引次数:
0(来源:Crossref)
0(来源:其他)