Ground-based Experiments of Low Temperature Solution Crystal Growth in Space
-
摘要: 首次使用疏水型聚四氟乙烯微孔滤膜,利用其透气不透水的特性,密封晶体生长容器,采用恒温蒸发法进行晶体生长.溶剂通过蒸发离开生长容器后,被生长容器外的吸附剂吸附,使得溶液维持一定过饱和度,以实现单晶的连续生长.在此基础上研制出一套空间低温溶液晶体生长地基模拟装置.利用此装置进行了一系列地基模拟实验,获得一批高质量α-LiIO3单晶,证实了该生长装置的溶剂蒸发量和容器密封性能够满足空间低温溶液晶体生长需要,为未来空间低温溶液晶体生长实验奠定了基础.Abstract: To investigate the microgravity effect of low temperature solution crystal growth in space, an apparatus used for crystal growth of low temperature solution has been developed. In the apparatus the hydrophobic polytetrafluoroethylene membrane is first used to seal a growth container by employing the water-repellent and ventilate characteristics of the membrane. When a solvent (water) leaves the growth container by evaporation, and then is absorbed by an adsorbent at the outer of the container, the crystal growth can be continuously carried out. A series of growth experiments on the ground have been performed utilizing this apparatus, and a number of α-LiIO3 crystals with large size and good quality have been obtained. It has been confirmed that the tightness of the membrane to seal a crystallizer and the evaporation capacity of a solvent through it can meet the requirement of low temperature solution crystal growth. A good foundation has been built for future crystal growth experiment in space.
-
Key words:
- Low temperature solution /
- Space crystal growth /
- LiIO3 /
- Ground-based experiment
-
[1] WANG Jingtao, GE Peiwen. Microgravity environment utilization[J]. Physics, 2000, 11:665-673(王景涛, 葛培文. 微重力环境利用[J]. 物理, 2000, 11:665-673) [2] CHEN Wanchun. Research of crystal growth in space under microgravity[J]. J. Chin. Ceramic Soc., 1995, 23(4):420-429(陈万春. 空间微重力晶体生长研究[J]. 硅酸盐学报, 1995, 23(4):420-429) [3] MADSEN H E L, CHRISTENSSON F, POLYAK L E, et al. Calcium-phosphate crystallization under terrestrial and microgravity conditions[J]. J. Cryst. Growth, 1995, 152:191-202 [4] FONTANA P, SCHEFER J, PETTIT D. Characterization of sodium chloride crystals grown in microgravity[J]. J. Cryst. Growth, 2011, 324:207-211 [5] COKER E N, JANSEN J C, JOHAN A, et al. The synthesis of zeolites under micro-gravity conditions: a review[J]. Micropor. Mesopor. Mat., 1998, 23:119-136 [6] WARZYWODA J, BAC N, JANSEN J C, et al. Growth of zeolites A and X in low Earth orbit[J]. J. Cryst. Growth, 2000, 220:140-149 [7] COKER E N, JANSEN J C, DIRENZO F, et al. Zeolite ZSM-5 synthesized in space: catalysts with reduced external surface activity[J]. Micropor. Mesopor. Mat., 2001, 46:223-236 [8] CHEN Wanchun. Space experiments of crystal growth in aqueous solution and its ground-based research[J]. J. Chin. Ceramic Soc., 2007, 35:1131-1139(陈万春. 水溶液晶体的空间生长及其地基模拟实验[J]. 硅酸盐学报, 2007, 35:1131-1139) [9] CHEN Wanchun, MA Wenyi. Crystal growth of lithium iodate in space[J]. J. Syn. Cryst., 1989, 18:93-96(陈万春, 马文漪. 碘酸锂晶体的空间生长[J]. 人工晶体学报, 1989, 18:93-96) [10] CHEN Wanchun, MA Wenyi, LIU Daodan, et al. Crystal growth of lithium iodate in space (2)[J]. J. Syn. Cryst., 1996, 25:1-5(陈万春, 马文漪, 刘道丹, 等. 碘酸锂晶体的空间生长(2)[J]. 人工晶体学报, 1996, 25:1-5) [11] CHEN W C, LI C R, LIU D D. Post-research on α-LiIO3 crystal growth in space[J]. J. Cryst. Growth, 2003, 254:169-175 [12] CHEN Wanchun, SONG Youting. Progresses in crystal growth under microgravity in space[J]. Sci. Technol. Rev., 2012, 30:46-57(陈万春, 宋友庭. 空间微重力环境中晶体生长研究发展[J]. 科技导报, 2012, 30:46-57) -
-
计量
- 文章访问数: 1607
- HTML全文浏览量: 244
- PDF下载量: 814
-
被引次数:
0(来源:Crossref)
0(来源:其他)