Kinetic Magnetic Turbulence Associated with Flux Transfer Events Observed by THEMIS Satellite ormalsize
-
摘要: THEMIS卫星观测到通量传输事件(FTE)的同时,也在磁层侧涡流区域观测到强磁场扰动现象.利用快速傅里叶变换分析磁场扰动频谱特征发现:大约在FTE的扰动频率(约0.1Hz)处,功率谱密度达到峰值;在质子回旋频率(约1Hz)至64Hz的频段内,功率谱密度随着频率的增大而减小,服从幂律分布P0 f-α.因此,可以认为这些磁场扰动为低纬边界层中的动力学磁场湍流.研究结果表明,当低纬边界层(Low Latitude Boundary Layer,LLBL)中卫星相对磁层顶或FTE的位置越来越远时,功率谱密度与功率谱斜率α(幂律指数)降低,但FTE所在的方位角或低纬磁层顶的磁地方时对幂律指数α和功率谱密度没有显著影响.这些观测特征表明移动的FTE是磁场湍流的源.磁层顶上的大规模扰动(如FTE)和相关的磁场湍流从动力学尺度揭示了磁鞘与磁层的类黏滞相互作用.然而低纬边界层中FTE磁层侧涡流形成所需的黏滞性是否可由磁场湍流来提供还需要验证.Abstract: Intense magnetic fluctuations are recorded in the magnetosphere near the magnetopause when Flux Transfer Events (FTE) are passed by the THEMIS satellites. The power spectra of these fluctuations obtained by Fast Fourier Transform (FFT) show that the Power Spectra Density (PSD) peaks around the disturbance frequency of FTE (about 0.1Hz), and decreases from the proton gyrofrequency (about 1Hz) to 64Hz following a power law of P0f-α. These fluctuations are interpreted as magnetic turbulences in the kinetic regime in the Low Latitude Boundary Layer (LLBL). The results show that both the PSD and the slopes of the power spectra α decrease when the observing satellite position is more and more away from the magnetopause or the FTE location in the LLBL. However, α and the PSD are independent from the azimuthal position of FTE or local time of the low latitude magnetopause. All these observations suggest that the moving FTEs are the source for these magnetic fluctuations. Large scale perturbations on the magnetopause, e.g. FTEs and the associated magnetic turbulences, provide a hint which may reveal the interaction between the magnetosheath and the magnetosphere in a kinetic scale. Whether the magnetic turbulences can provide enough viscosity for the forming of the flow vortices on the magnetospheric side of FTEs or not need to be further confirmed.
-
Key words:
- Flux transfer event /
- Magnetic turbulence /
- Spectral index /
- Power spectra density /
- Viscosity
-
[1] RUSSELL C T, ELPHIC R C. Initial ISEE magnetometer results:magnetopause observations[J]. Space Sci. Rev., 1978, 22(6):681-715 [2] PASCHMANN G, HAERENDEL G, PAPAMASTORAKIS I, et al. Plasma and magnetic field characteristics of magnetic flux transfer events[J]. J. Geophys. Res., 1982, 87(A4):2159-2168 [3] LEE L C, FU Z F. A theory of magnetic flux transfer at the Earth's magnetopause[J]. Geophys. Res. Lett., 1985, 12(2):105-108 [4] PU Z Y, HOU P T, LIU Z X. Vortex-induced tearing mode instability as a source of flux transfer events[J]. J. Geophys. Res., 1990, 95(A11):18861-18869 [5] SOUTHWOOD D J. Theoretical aspects of ionosphere-magnetosphere-solar wind coupling[J]. Adv.Space Res., 1985, 5(4):7-14 [6] BERCHEM J, RUSSELL C T. Flux transfer events on the magnetopause:spatial distribution and controlling factors[J]. J. Geophys. Res., 1984, 89(A8):6689-6703 [7] RIJNBEEK R P, COWLEY S W H, SOUTHWOOD D J, et al. A survey of dayside flux transfer events observed by ISEE 1 and 2 magnetometers[J]. J. Geophys. Res., 1984, 89(A2):786-800 [8] ZHANG H, KHURANA K K, KIVELSON M G, et al. Modeling a force-free flux transfer event probed by multiple time history of events and macroscale interactions during substorms (THEMIS) spacecraft[J]. J. Geophys. Res., 2008, 113(A1):A00C05 [9] KOROTOVA G I, SIBECK D G, ROSENBERG T. Geotail observations of FTE velocities[J]. Ann. Geophys., 2009, 27(1):83-92 [10] FARRUGIA C J, ELPHIC R C, SOUTHWOOD D J, et al. Field and flow perturbations outside the reconnected field line region in flux transfer events:theory[J]. Planet. Space Sci., 1987, 35(2):227-240 [11] LIU J, ANGELOPOULOS V, SIBECK D, et al. THEMIS observations of the dayside traveling compression region and flows surrounding flux transfer events[J]. Geophys. Res. Lett., 2008, 35(17):L17S07 [12] ZHANG H, KIVELSON M G, ANGELOPOULOS V, et al. Flow vortices associated with flux transfer events moving along the magnetopause:observations and an MHD simulation[J]. J. Geophys. Res., 2011, 116(A8):A08202 [13] SONNERUP B U Ö, SIEBERT K D. Theory of the low latitude boundary layer and its coupling to the ionosphere:a tutorial review[M]//Earth's Low-Latitude Boundary Layer. Washington:American Geophysical Union, 2013 [14] CAI C L, CAO J B, ZHOU G C, et al. Whistler turbulence at the magnetopause:a nonlinear generation mechanism[J]. Phys. Plasmas, 2001, 8(1):272-276 [15] TU C Y, MARSCH E. MHD structures, waves and turbulence in the solar wind:observations and theories[J]. Space Sci. Rev., 1995, 73(1/2):1-210 [16] ZIMBARDO G, GRECO A, SORRISO-VALVO L, et al. Magnetic turbulence in the geospace environment[J]. Space Sci. Rev., 2010, 156(1-4):89-134 [17] CUMMINGS W D, COLEMAN JR P J. Magnetic fields in the magnetopause and vicinity at synchronous altitude[J]. J. Geophys. Res., 1968, 73(17):5699-5718 [18] NEUGEBAUER M, RUSSELL C T, SMITH E J. Observations of the internal structure of the magnetopause[J]. J. Geophys. Res., 1974, 79(4):499-510 [19] SCKOPKE N, PASCHMANN G, HAERENDEL G, et al. Structure of the low-latitude boundary layer[J]. J. Geophys. Res., 1981, 86(A4):2099-2110 [20] STASIEWICZ K, KHOTYAINTSEV Y, GRZESIAK M. Dispersive Alfvén waves observed by Cluster at the magnetopause[J]. Phys. Scr., 2004, T107:171 [21] STASIEWICZ K, SEYLER C E, MOZER F S, et al. Magnetic bubbles and kinetic Alfvén waves in the high-latitude magnetopause boundary[J]. J. Geophys. Res., 2001, 106(A12):29503-29514 [22] REZEAU L, PERRAUT S, ROUX A. Electromagnetic fluctuations in the vicinity of the magnetopause[J]. Geophys. Res. Lett., 1986, 13(11):1093-1096 [23] REZEAU L, MORANE A, PERRAUT S, et al. Characterization of Alfvenic fluctuations in the magnetopause boundary layer[J]. J. Geophys. Res., 1989, 94(A1):101-110 [24] LE G, ZHENG Y, RUSSELL C T, et al. Flux transfer events simultaneously observed by polar and cluster:flux rope in the subsolar region and flux tube addition to the polar cusp[J]. J. Geophys. Res., 2008, 113(A1):A01205 [25] GURNETT D A, ANDERSON R R, TSURUTANI B T, et al. Plasma wave turbulence at the magnetopause:observations from ISEE 1 and 2[J]. J. Geophys. Res., 1979, 84(A12):7043-7058 [26] TSURUTANI B T, SMITH E J, THORNE R M, et al. Wave-particle interactions at the magnetopause:contributions to the dayside aurora[J]. Geophys. Res. Lett., 1981, 8(2):183-186 [27] PASCHMANN G, PAPAMASTORAKIS J, SCKOPKE N, et al. Altitude and structure of an auroral arc acceleration region[J]. J. Geophys. Res. Space Phys., 1983, 88(A9):7121-7130 [28] CHASTON C C, WILBER M, MOZER F S, et al. Mode conversion and anomalous transport in Kelvin-Helmholtz vortices and kinetic Alfvén waves at the Earth's magnetopause[J]. Phys. Rev. Lett., 2007, 99(17):175004 [29] JOHNSON J R, CHENG C Z. Kinetic Alfvén waves and plasma transport at the magnetopause[J]. Geophys. Res. Lett., 1997, 24(11):1423-1426 [30] JOHNSON J R, CHENG C Z. Stochastic ion heating at the magnetopause due to kinetic Alfvén waves[J]. Geophys. Res. Lett., 2001, 28(23):4421-4424 [31] LEE L C, JOHNSON J R, MA Z W. Kinetic Alfvén waves as a source of plasma transport at the dayside magnetopause[J]. J. Geophys. Res., 1994, 99(A9):17405-17411 [32] SIBECK D G, ANGELOPOULOS V. THEMIS science objectives and mission phases[J]. Space Sci. Rev., 2008, 141(1-4):35-59 [33] AUSTER H U, GLASSMEIER K H, MAGNES W, et al. The THEMIS fluxgate magnetometer[J]. Space Sci. Rev., 2008, 141(1-4):235-264 [34] ROUX A, LE CONTEL O, COILLOT C, et al. The search coil magnetometer for THEMIS[J]. Space Sci. Rev., 2008, 141(1-4):265-275 [35] MCFADDEN J P, CARLSON C W, LARSON D, et al. The THEMIS ESA plasma instrument and in-flight calibration[J]. Space Sci. Rev., 2008, 141(1-4):277-302 [36] SHUE J H, SONG P, RUSSELL C T, et al. Magnetopause location under extreme solar wind conditions[J]. J. Geophys. Res., 1998, 103(A8):17691-17700 [37] ZHANG H, KIVELSON M G, KHURANA K K, et al. Evidence that crater flux transfer events are initial stages of typical flux transfer events[J]. J. Geophys. Res., 2010, 115(A8):A08229 [38] ALEXANDROVA O. Solar wind vs. magnetosheath turbulence and Alfvén vortices[J]. Nonlin. Proc. Geophys., 2008, 15(1):95-108 [39] NYKYRI K, GRISON B, CARGILL P J, et al. Origin of the turbulent spectra in the high-altitude cusp:cluster spacecraft observations[J]. Ann. Geophys., 2006, 24(3):1057-1075 [40] DENSKAT K U, BEINROTH H J, NEUBAUER F M. Interplanetary magnetic field power spectra with frequencies from 2.4×10 to the -5thHz to 470Hz from HELIOS-observations during solar minimum conditions[J]. J. Geophys. Zeischrift Geophys., 1983, 54(1):60-67 [41] LEAMON R J, SMITH C W, NESS N F, et al. Observational constraints on the dynamics of the interplanetary magnetic field dissipation range[J]. J. Geophys. Res., 1998, 103(A3):4775-4787 [42] RINAWA M L, SHARMA R P, MODI K V, et al. The nonlinear evolution of kinetic Alfvén wave with the ion acoustic wave and turbulent spectrum in the magnetopause region[J]. J. Geophys. Res., 2015, 120(2):1238-1247 [43] GRECO A, TAKTAKISHVILI A L, ZIMBARDO G, et al. Ion dynamics in the near-Earth magnetotail:magnetic turbulence versus normal component of the average magnetic field[J]. J. Geophys. Res., 2002, 107(A10):1267 [44] MENG C I, ANDERSON K A. Characteristics of the magnetopause energetic electron layer[J]. J. Geophys. Res., 1975, 80(31):4237-4243 [45] BAKER D N, STONE E C. The magnetopause energetic electron layer, 1. Observations along the distant magnetotail[J]. J. Geophys. Res., 1978, 83(A9):4327-4338 [46] FAGANELLO M, CALIFANO F, PEGORARO F. Numerical evidence of undriven, fast reconnection in the solar-wind interaction with earth's magnetosphere:formation of electromagnetic coherent structures[J]. Phys. Rev. Lett., 2008, 101(10):105001 [47] GRECO A, TAKTAKISHVILI A L, ZIMBARDO G, et al. Ion transport and Lévy random walk across the magnetopause in the presence of magnetic turbulence[J]. J. Geophys. Res., 2003, 108(A11):1395 [48] LABELLE J, TREUMANN R A. Plasma waves at the dayside magnetopause[J]. Space Sci. Rev., 1988, 47(1/2):175-202 [49] MATSUMOTO Y, HOSHINO M. Turbulent mixing and transport of collisionless plasmas across a stratified velocity shear layer[J]. J. Geophys. Res., 2006, 111(A5):A05213 [50] TAKTAKISHVILI A, ZIMBARDO G, AMATA E, et al. Ion escape from the high latitude magnetopause:analysis of oxygen and proton dynamics in the presence of magnetic turbulence[J]. Ann. Geophys., 2007, 25(8):1877-1885 [51] GRIGORENKO E E, SAUVAUD J A, ZELENYI L M. Spatial-temporal characteristics of ion beamlets in the plasma sheet boundary layer of magnetotail[J]. J. Geophys. Res., 2007, 112(A5):A05218 -
-
计量
- 文章访问数: 1533
- HTML全文浏览量: 174
- PDF下载量: 4612
-
被引次数:
0(来源:Crossref)
0(来源:其他)