留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

热毛细液层非模态稳定性分析

郑晟 胡开鑫

郑晟, 胡开鑫. 热毛细液层非模态稳定性分析[J]. 空间科学学报, 2022, 42(2): 270-276. doi: 10.11728/cjss2022.02.201104097
引用本文: 郑晟, 胡开鑫. 热毛细液层非模态稳定性分析[J]. 空间科学学报, 2022, 42(2): 270-276. doi: 10.11728/cjss2022.02.201104097
ZHENG Sheng, HU Kaixin. Non-modal Stability Analysis of Thermocapillary Liquid Layers (in Chinese). Chinese Journal of Space Science, 2022, 42(2): 270-276. DOI: 10.11728/cjss2022.02.201104097
Citation: ZHENG Sheng, HU Kaixin. Non-modal Stability Analysis of Thermocapillary Liquid Layers (in Chinese). Chinese Journal of Space Science, 2022, 42(2): 270-276. DOI: 10.11728/cjss2022.02.201104097

热毛细液层非模态稳定性分析

doi: 10.11728/cjss2022.02.201104097
基金项目: 国家自然科学基金项目 (11872032) 和浙江省自然科学基金项目 (LY21A020006) 共同资助
详细信息
    作者简介:

    胡开鑫:E-mail:hukaixin@nbu.edu.cn

  • 中图分类号: V524

Non-modal Stability Analysis of Thermocapillary Liquid Layers

  • 摘要: 利用非模态稳定性方法研究了亚临界情况下的热毛细液层对初始扰动和外加激励的敏感性。通过瞬态增长函数和反馈函数分别反映流场对初始扰动和外加激励的放大。研究结果表明, 小Prandtl数(Pr)下的亚临界流动对初始扰动和外加激励均十分敏感,最大扰动放大与Reynolds 数(Re)的平方近似成正比。在大Pr下,只有回流的亚临界流动存在对外加激励的显著放大,其最大值分别随Re5Pr5呈线性增长。随着外加激励频率的增大,最优扰动波数逐渐减小。流场和温度场表明输出的扰动速度和温度量级远大于输入的量级,并且与管道流动相比存在明显不同。

     

  • 图  1  热毛细液层模型

    Figure  1.  Schematic of thermocapillary liquid layers

    图  2  线性流Pr = 0.002, k = 4, $ \phi = {90^ \circ } $不同Reynolds 数下瞬态增长函数G(t)随时间t的变化

    Figure  2.  Variation of G(t) with time of the linear flow at Pr = 0.002, k = 4, $ \phi = {90^ \circ } $ with various Reynolds numbers

    图  3  线性流Pr=0.002, k=4, $ \phi = {90^ \circ } $最大瞬态增长Gmax和最大扰动放大$ {\Re _{{\text{max}}}} $随Reynolds数的变化

    Figure  3.  Maximum transient growth function Gmax and the maximum response function $ {\Re _{{\text{max}}}} $ versus Reynolds numbers of the linear flow at Pr=0.002, k=4, $ \phi = {90^ \circ } $

    图  4  回流Re=2, k=2.3, $ \phi = {0^ \circ } $不同Prandtl 数下扰动放大$ \Re$随实频率 $ \omega $ 的变化

    Figure  4.  Response function $ \Re $ versus the real frequency $ \omega $ of the return flow at Re=2, k=2.3, $ \phi = {0^ \circ } $ with various Prandtl numbers

    图  5  回流k=2.3, $ \phi = {0^ \circ } $最大扰动放大$ {\Re _{{\text{max}}}} $随Prandtl数和Reynolds数的变化

    Figure  5.  Maximum response function $ {\Re _{{\text{max}}}} $ versus the Prandtl numbers and Reynolds numbers at k=2.3, $ \phi = {0^ \circ } $

    图  6  线性流Pr=0.002、Ma=3在不同实频率下$ \alpha - \beta $平面内${\rm{lg}}\Re $的等值线

    Figure  6.  Level lines of the logarithm of the response $ {\rm{lg}}\Re $ in the $ \alpha - \beta $ plane for the linear flow at Pr = 0.002, Ma=3 with various real frequency

    图  7  回流Pr=150,Ma=300在不同实频率下$ \alpha - \beta $平面内$ {\rm{lg}}\Re $的等值线

    Figure  7.  Level lines of the logarithm of the response $ {\rm{lg}}\Re $ in the $ \alpha - \beta $ plane for the return flow at Pr =150, Ma=300 with various real frequency

    图  8  线性流Pr=0.002, Ma=3, k=2, $ \phi = {90^ \circ } $ 扰动放大对应的扰动场。(a) 输入速度场,(b) 输出速度场,(c) 输入温度场,(d) 输出温度场

    Figure  8.  Perturbation fields corresponding to the response for the linear flow at Pr=0.002, Ma=3, k=2, $ \phi = {90^ \circ } $. (a) Input velocity field, (b) output velocity field, (c) input temperature field and (d) output temperature field

    图  9  回流Pr=150, Ma=300, k=2.3, $ \phi = {0^ \circ } $ 扰动放大对应的扰动场。(a) 输入速度场,(b) 输出速度场,(c) 输入温度场,(d) 输出温度场

    Figure  9.  Perturbation fields corresponding to the response for the return flow at Pr=150, Ma=300, k=2.3, $ \phi = {0^ \circ } $. (a) Input velocity field, (b) output velocity field, (c) input temperature field and (d) output temperature field

  • [1] KARBALAEI A, KUMAR R, CHO H J. Thermocapillarity in microfluidics-a review[J]. Micromachines, 2016, 7(1): 13 doi: 10.3390/mi7010013
    [2] 胡文瑞. 微重力科学概论[M]. 北京: 科学出版社, 2010
    [3] WEI P S, LIU H J, LIN C L. Scaling weld or melt pool shape induced by thermocapillary convection[J]. International Journal of Heat and Mass Transfer, 2012, 55(9/10): 2328-2337
    [4] DÁVALOS-OROZCO L A. Nonlinear sideband thermocapillary instability of a thin film coating the inside of a thick walled cylinder with finite thermal conductivity in the absence of gravity[J]. Microgravity Science and Technology, 2020, 32(2): 105-117 doi: 10.1007/s12217-019-09751-5
    [5] 莫东鸣, 徐敏. 环形池内双层流体浮力–热毛细对流的实验研究[J]. 材料导报, 2018, 32(S2): 398-401

    MO Dongming, XU Min. Experiment on buoyancy-thermocapillary convection of two-layer fluid in annular pool[J]. Materials Review, 2018, 32(S2): 398-401
    [6] 叶学民, 张湘珊, 李明兰, 等. 自润湿流体液滴的热毛细迁移特性[J]. 物理学报, 2018, 67(18): 184704 doi: 10.7498/aps.67.20180660

    YE Xuemin, ZHANG Xiangshan, LI Minglan, et al. Thermo capillary migration characteristics of self-rewetting drop[J]. Acta Physica Sinica, 2018, 67(18): 184704 doi: 10.7498/aps.67.20180660
    [7] 曹文慧, 段俐, 李永强, 等. 热毛细对流自由面微弱位移信号高灵敏度相位检测系统[J]. 中国科学:技术科学, 2018, 48(8): 908-920 doi: 10.1360/N092017-00366

    CAO Wenhui, DUAN Li, LI Yongqiang, et al. High-sensitivity phase detecting system for measurement of weak displacement signals on the liquid free surface in thermocapillary convection[J]. Scientia Sinica Technologica, 2018, 48(8): 908-920 doi: 10.1360/N092017-00366
    [8] DAVIS S H. Thermocapillary instabilities[J]. Annual Review of Fluid Mechanics, 1987, 19: 403-435 doi: 10.1146/annurev.fl.19.010187.002155
    [9] SCHATZ M F, NEITZEL G P. Experiments on thermocapillary instabilities[J]. Annual Review of Fluid Mechanics, 2001, 33: 93-127 doi: 10.1146/annurev.fluid.33.1.93
    [10] SMITH M K, DAVIS S H. Instabilities of dynamic thermocapillary liquid layers. Part 1. Convective instabilities[J]. Journal of Fluid Mechanics, 1983, 132: 119-144 doi: 10.1017/S0022112083001512
    [11] CHAN C L, CHEN C F. Effect of gravity on the stability of thermocapillary convection in a horizontal fluid layer[J]. Journal of Fluid Mechanics, 2010, 647: 91-103 doi: 10.1017/S0022112009994046
    [12] RILEY R J, NEITZEL G P. Instability of thermocapillary–buoyancy convection in shallow layers. Part 1. Characterization of steady and oscillatory instabilities[J]. Journal of Fluid Mechanics, 1998, 359: 143-164 doi: 10.1017/S0022112097008343
    [13] KANG Q, WANG J, DUAN L, et al. The volume ratio effect on flow patterns and transition processes of thermocapillary convection[J]. Journal of Fluid Mechanics, 2019, 868: 560-583 doi: 10.1017/jfm.2019.108
    [14] SCHMID P J. Nonmodal stability theory[J]. Annual Review of Fluid Mechanics, 2007, 39: 129-162 doi: 10.1146/annurev.fluid.38.050304.092139
    [15] KERSWELL R R. Nonlinear nonmodal stability theory[J]. Annual Review of Fluid Mechanics, 2018, 50: 319-345 doi: 10.1146/annurev-fluid-122316-045042
    [16] LIU R, LIU Q S. Non-modal instability in plane Couette flow of a power-law fluid[J]. Journal of Fluid Mechanics, 2011, 676: 145-171 doi: 10.1017/jfm.2011.36
    [17] DAVIS J M, KATAOKA D E, TROIAN S M. Transient dynamics and structure of optimal excitations in thermocapillary spreading: precursor film model[J]. Physics of Fluids, 2006, 18(9): 092101 doi: 10.1063/1.2345372
    [18] KUHLMANN H C, SCHOISSWOHL U. Flow instabilities in thermocapillary-buoyant liquid pools[J]. Journal of Fluid Mechanics, 2010, 644: 509-535 doi: 10.1017/S0022112009992953
    [19] DOUMENC F, BOECK T, GUERRIER B, et al. Transient Rayleigh–Bénard–Marangoni convection due to evaporation: a linear non-normal stability analysis[J]. Journal of Fluid Mechanics, 2010, 648: 521-539 doi: 10.1017/S0022112009993417
    [20] SCHMID P J, HENNINGSON D S. Stability and Transition in Shear Flows[M]. New York: Springer, 2001
    [21] SAMEEN A, GOVINDARAJAN R. The effect of wall heating on instability of channel flow[J]. Journal of Fluid Mechanics, 2007, 577: 417-442 doi: 10.1017/S0022112007004636
    [22] SMITH M K. Instability mechanisms in dynamic thermocapillary liquid layers[J]. Physics of Fluids, 1998, 29(10): 3182-3186
  • 加载中
图(9)
计量
  • 文章访问数:  41
  • HTML全文浏览量:  21
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-04
  • 录用日期:  2021-05-28
  • 修回日期:  2021-07-21
  • 网络出版日期:  2022-05-25

目录

    /

    返回文章
    返回