留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

稻城太阳射电望远镜(DSRT)天线遮挡效应仿真

路光 王冰 陈耀 吴季 阎敬业 武昭 严发宝 武林

路光, 王冰, 陈耀, 吴季, 阎敬业, 武昭, 严发宝, 武林. 稻城太阳射电望远镜(DSRT)天线遮挡效应仿真[J]. 空间科学学报, 2022, 42(2): 294-305. doi: 10.11728/cjss2022.02.210202017
引用本文: 路光, 王冰, 陈耀, 吴季, 阎敬业, 武昭, 严发宝, 武林. 稻城太阳射电望远镜(DSRT)天线遮挡效应仿真[J]. 空间科学学报, 2022, 42(2): 294-305. doi: 10.11728/cjss2022.02.210202017
LU Guang, WANG Bing, CHEN Yao, WU Ji, YAN Jingye, WU Zhao, YAN Fabao, WU Lin. Simulations of the Antenna-shielding Effect of the Daocheng Solar Radio Telescope (DSRT) (in Chinese). Chinese Journal of Space Science, 2022, 42(2): 294-305. DOI: 10.11728/cjss2022.02.210202017
Citation: LU Guang, WANG Bing, CHEN Yao, WU Ji, YAN Jingye, WU Zhao, YAN Fabao, WU Lin. Simulations of the Antenna-shielding Effect of the Daocheng Solar Radio Telescope (DSRT) (in Chinese). Chinese Journal of Space Science, 2022, 42(2): 294-305. DOI: 10.11728/cjss2022.02.210202017

稻城太阳射电望远镜(DSRT)天线遮挡效应仿真

doi: 10.11728/cjss2022.02.210202017
基金项目: 国家重大科技基础设施子午工程项目和中国科学院前沿科学重点研究项目(QYZDY-SSW-JSC014)共同资助
详细信息
    作者简介:

    陈耀:E-mail:yaochen@sdu.edu.cn

  • 中图分类号: P161

Simulations of the Antenna-shielding Effect of the Daocheng Solar Radio Telescope (DSRT)

  • 摘要: 稻城太阳射电望远镜(DSRT)由313面6 m直径抛物面天线组成。天线接收信号幅值和相位的精确修正是决定DSRT成像质量的关键因素。然而DSRT阵列可能会出现邻近天线相互遮挡的问题,从而改变接收信号的幅值和相位,影响其成像质量。利用电磁仿真软件计算了接收频率为300 MHz(波长λ=1 m)时的相邻两单元与相邻三单元两种情况。三元系统中遮挡效应的影响仅比双元系统中相关影响略为显著。在本文考虑的最严重的遮挡情况(天线边缘的投影间距D = –1λ)下,对于双/三元系统,相对于单天线系统水平和垂直增益分别降低了0.6/0.6 dB和 0.3/0.4 dB,相位偏差分别为–3.3º/–3.871º和–1.744º/–2.244º。此外还分析了其他遮挡情况。研究表明DSRT系统中的天线遮挡效应分析可由双元系统充分描述,在后期数据处理时应适当考虑该效应,尽量提升DSRT数据的利用效率和成图质量。

     

  • 图  1  不同时刻DSRT中被遮挡天线位置分布(蓝点为未遮挡天线位置,红点为被遮挡天线位置)

    Figure  1.  Distributions of antennas in the DSRT array at different local time (Blue and red dots represent unshielded and shielded antennas respectively)

    图  2  不同时刻DSRT剔除可视遮挡基线的uv分布

    Figure  2.  uv excluding baselines consisting of shielded antennas

    图  3  双线极化对数周期天线馈源(a)和6 m抛物面天线结构(b)

    Figure  3.  Feed of the dual polarization log periodic antenna (a) and the 6-meter parabolic antenna (b)

    图  4  仿真计算的天线回波损耗S11 (a)及不同频率的天线主方向增益分布(b)

    Figure  4.  Return loss S11 of the simulated antenna (a) and antenna gain along the main direction at different frequencies (b)

    图  5  双元系统的侧视(a)前视(b)及三元系统俯视(c)图

    Figure  5.  (a) Side view of the two-antennas system; (b) front view of the two-antenna system; (c) side view of the three-antenna system

    图  6  仿真计算的单元、双元和三元系统中不同遮挡情况下水平极化接收天线在300 MHz频率的增益方向图(灰色竖线表示单天线的主方向)

    Figure  6.  Simulated gain pattern of the horizontal polarization at 300 MHz under different shielding conditions (The gray vertical line is the main direction of the single-antenna system)

    图  7  仿真计算的单元、双元和三元系统中不同遮挡情况下垂直极化接收天线在300 MHz频率的增益方向图(灰色竖线表示单天线的主方向)

    Figure  7.  Simulated gain pattern of the vertical polarization at 300 MHz under different shielding conditions (The gray vertical line is the main direction of the single-antenna system)

    图  8  仿真计算的单元、双元和三元系统中不同遮挡情况下水平极化(a)(b)和垂直极化(b)(d)的相位方向图

    Figure  8.  Simulated phase patterns of (a)(c) horizontal polarization and (b)(d) vertical polarization under different shielding conditions

    图  9  双元 (实线) 和三元 (虚线) 系统中,不同遮挡情况下接收天线的辐射相位

    Figure  9.  Radiation phase of receiving antenna under different shielding conditions in the two-antenna system (solid line) and three-antenna system (dotted line)

    表  1  双/三元系统中不同遮挡情况水平极化接收天线的辐射性能比较

    Table  1.   Comparison of radiation characteristics of horizontal polarized antennas under different shielding conditions in the two/three-antenna system

    双/三元系统主方向增益/dBi双/三元系统旁瓣水平/dB双/三元系统主波束指向/(°)
    单天线23.8/23.819.0/19.00/0
    D=1λ23.8 /23.819.2/19.10/0
    D=0.5λ23.8/23.819.9/19.40/0.5
    D=0λ23.8/23.819.8/19.00.5/0.5
    D=–0.5λ23.6/23.617.0/18.71.0/1.0
    D=–1λ23.2/23.217.7/16.21.5/1.5
    下载: 导出CSV

    表  2  双/三元系统中不同遮挡情况垂直极化接收天线的辐射性能比较

    Table  2.   Comparison of radiation characteristics of vertical polarization under different shielding conditions in the system with two/three-antenna system

    双/三元系统主方向增益/dBi双/三元系统旁瓣水平/dB双/三元系统主波束指向/(°)
    单天线23.8/23.819.0/19.00/0
    D=1λ23.8/23.819.1/19.10/0
    D=0.5λ23.8/23.819.4/19.40/0.5
    D=0λ23.8/23.819.0/19.00.5/0.5
    D=–0.5λ23.6/23.717.9/18.71.0/1.0
    D=–1λ23.5/23.415.6/16.21.5/1.5
    下载: 导出CSV

    表  3  双/三元系统中不同间距遮挡下接收天线的主方向相位比较

    Table  3.   Comparison of radiation phase along the main direction of the receiving antenna under different shielding distance in the two/three-antenna system

    主方向相位变化双/三元系统水平极化/(°)双/三元系统垂直极化/(°)
    单天线0/00/0
    D=1λ–0.279/–0.309–0.079/–0.093
    D=0.5λ–0.767/–0.819–0.089/–0.137
    D=0λ–1.289/–1.545–0.393/–0.490
    D=–0.5λ–1.983/–2.096–1.085/–0.490
    D=–1λ–3.300/–3.871–1.744/–2.244
    下载: 导出CSV
  • [1] MCLEAN D J. Metre-wave solar radio bursts[M]//Solar Radiophysics. Cambridge: Cambridge University Press, 1985
    [2] WILD J P, SMERD S F, WEISS A A. Solar bursts[J]. Annual Review of Astronomy and Astrophysics, 1963, 1: 291-366 doi: 10.1146/annurev.aa.01.090163.001451
    [3] FENG S W, CHEN Y, KONG X L, et al. Radio signatures of coronal-mass-ejection-streamer interaction and source diagnostics of type II Radio Burst[J]. The Astrophysical Journal, 2012, 753(1): 21 doi: 10.1088/0004-637X/753/1/21
    [4] CHEN Y, DU G H, FENG L, et al. A solar type II radio burst from coronal mass ejection-coronal ray interaction: simultaneous radio and extreme ultraviolet imaging[J]. The Astrophysical Journal, 2014, 787(1): 59 doi: 10.1088/0004-637X/787/1/59
    [5] FENG S W, CHEN Y, KONG X L, et al. Diagnostics on the source properties of a type II radio burst with spectral bumps[J]. The Astrophysical Journal, 2013, 767(1): 29 doi: 10.1088/0004-637X/767/1/29
    [6] ALAIN K, JEANMARC D. The nancay radioheliograph[J]. Coronal Physics from Radio and Space Observations, 1997, 483: 192-201
    [7] GRECHNEV V V, LESOVOI S V, SMOLKOV G Y, et al. The Siberian solar radio telescope: the current state of the instrument, observations, and data[J]. Solar Physics, 2003, 216(1/2): 239-272 doi: 10.1023/A:1026153410061
    [8] XU L, YAN Y H, MA L, et al. Image processing for synthesis imaging of Mingantu Spectral Radioheliograph (MUSER)[J]. Multimedia Tools and Applications, 2018, 77(16): 20937-20954 doi: 10.1007/s11042-017-5545-5
    [9] NAKAJIMA H, NISHIO M, ENOME S, et al. The Nobeyama radioheliograph[J]. Proceedings of the IEEE, 1994, 82(5): 705-713 doi: 10.1109/5.284737
    [10] 杜清府, 程仁君, 陈昌硕, 等. 太阳射电观测系统多通道变频电路一致性补偿方法与实现[J]. 中国科学:技术科学, 2019, 49(8): 901-909 doi: 10.1360/N092018-00408

    DU Qingfu, CHENG Renjun, CHEN Changshuo, et al. A compensation method for the consistency of multi-channel mixing circuit for solar radio observation system[J]. Scientia Sinica Technologica, 2019, 49(8): 901-909 doi: 10.1360/N092018-00408
    [11] 徐珂, 尚自乾, 严发宝, 等. 毫米波宽带太阳射电观测系统的信号平坦度补偿方法[J]. 中国科学:技术科学, 2021, 51(1): 413-423

    XU Ke, SHANG Ziqian, YAN Fabao, et al. Compensation method of signal flatness for a broadband solar millimeter radio observation system[J]. Scientia Sinica Technologica, 2021, 51(1): 413-423
    [12] THOMPSON A R, MORAN J M, SWENSON JR G W. Interferometry and Synthesis in Radio Astronomy[M]. New York: John Wiley & Sons, 2008
    [13] ROHLFS K, WILSON T L. 射电天文工具[M]. 姜碧沩, 译. 北京: 北京师范大学出版社, 2008

    ROHLFS K, WILSON T L. Tools of Radio Astronomy[M]. JIANG Biwei, trans. Beijing: Beijing Normal University Press, 2008
    [14] 颜毅华, 陈林杰, 谭宝林, 等. 太阳大气等离子体动力学射电成像探测系统[J]. 中国科学:物理学 力学 天文学, 2019, 49(5): 059608

    YAN Yihua, CHEN Linjie, TAN Baolin, et al. Radioheliograph array for the solar atmospheric dynamics[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2019, 49(5): 059608
    [15] SERGEY L, ALEXANDER A, ALEKSEY K, et al. Siberian Radioheliograph: first results[J]. Solar-Terrestrial Physics, 2017, 3(1): 3-18 doi: 10.12737/article_58f96ec60fec52.86165286
    [16] WANG C. Development of the Chinese meridian project[J]. Chinese Journal of Space Science, 2010, 30(4): 382-384
    [17] WANG C. Recent advances in observation and research of the Chinese Meridian Project[J]. Chinese Journal of Space Science, 2018, 38(5): 640-649
    [18] 王添鸽, 马迁, 欧刚强. 舰艇卫星通信天线遮挡问题研究[J]. 舰船电子工程, 2019, 39(6): 76-78

    WANG Tiange, MA Qian, OU Gangqiang. Research on blocking problems of the satellite antenna of warships[J]. Ship Electronic Engineering, 2019, 39(6): 76-78
    [19] 王国民, 谷晓鹏, 邱恺. 机载天线遮挡角在地空通信中的影响探析[J]. 通信技术, 2016, 49(12): 1724-1727

    WANG Guomin, GU Xiaopeng, QIU kai. Effects of airborne-antenna blocking angle on air-grounding communication[J]. Communications Technology, 2016, 49(12): 1724-1727
    [20] FENG S W, CHEN Y, LI C Y, et al. Harmonics of solar radio spikes at metric wavelengths[J]. Solar Physics, 2018, 293(3): 39 doi: 10.1007/s11207-018-1263-z
    [21] STUTZMAN W L, THIELE G A. Antenna Theory and Design[M]. 2 nd ed. New York: Wiley, 1998
    [22] 宋东安, 易学勤, 温定娥. 金属挡板遮挡效应试验[J]. 舰船科学技术, 2010, 32(9): 76-79

    SONG Dong’an, YI Xueqin, WEN Dinge. Experimental study of shaded effectiveness of plates[J]. Ship Science and TEchnology, 2010, 32(9): 76-79
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  78
  • HTML全文浏览量:  28
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-02
  • 录用日期:  2021-10-08
  • 修回日期:  2021-10-29
  • 网络出版日期:  2022-05-25

目录

    /

    返回文章
    返回