留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

太阳活动下降年昆明地区TEC变化特征与IRI-2020模拟比较分析

刘国其 李昊昱 解朝娣 刘本玉 刘瑾 李祥 刘魁 李昊桐

刘国其, 李昊昱, 解朝娣, 刘本玉, 刘瑾, 李祥, 刘魁, 李昊桐. 太阳活动下降年昆明地区TEC变化特征与IRI-2020模拟比较分析[J]. 空间科学学报, 2023, 43(2): 241-250. doi: 10.11728/cjss2023.02.2022-0066
引用本文: 刘国其, 李昊昱, 解朝娣, 刘本玉, 刘瑾, 李祥, 刘魁, 李昊桐. 太阳活动下降年昆明地区TEC变化特征与IRI-2020模拟比较分析[J]. 空间科学学报, 2023, 43(2): 241-250. doi: 10.11728/cjss2023.02.2022-0066
LIU Guoqi, LI Haoyu, XIE Chaodi, LIU Benyu, LIU Jin, LI Xiang, LIU Kui, LI Haotong. Analysis of Variation Characteristic of TEC at Kunming Region and Comparison with IRI-2020 during Descending Phase of Solar Activity (in Chinese). Chinese Journal of Space Science, 2023, 43(2): 241-250 doi: 10.11728/cjss2023.02.2022-0066
Citation: LIU Guoqi, LI Haoyu, XIE Chaodi, LIU Benyu, LIU Jin, LI Xiang, LIU Kui, LI Haotong. Analysis of Variation Characteristic of TEC at Kunming Region and Comparison with IRI-2020 during Descending Phase of Solar Activity (in Chinese). Chinese Journal of Space Science, 2023, 43(2): 241-250 doi: 10.11728/cjss2023.02.2022-0066

太阳活动下降年昆明地区TEC变化特征与IRI-2020模拟比较分析

doi: 10.11728/cjss2023.02.2022-0066
基金项目: 国家自然科学基金项目(41964001)和云南省教育厅科学研究基金项目(2018 JS015)共同资助
详细信息
    作者简介:

    刘国其:E-mail:guoqi-liu@ynu.edu.cn

  • 中图分类号: P352

Analysis of Variation Characteristic of TEC at Kunming Region and Comparison with IRI-2020 during Descending Phase of Solar Activity

  • 摘要: 利用昆明低纬度测站(24.7°N,102.9°E,磁纬15.1°N)2016-2019年的观测数据和最新版的国际参考电离层(IRI-2020)模拟结果,对昆明地区电离层总电子含量(TEC)在太阳活动下降年期间的变化特征及与模型输出进行对比研究。结果表明, 昆明TEC存在明显的春秋高值、夏冬低值的半年异常;白天高值、夜间低值的日变化特点突出,日峰值出现在06:30-08:00 UT(约13:00-15:00 LT);TEC随太阳活动减弱而明显下降,年平均峰值在2016-2019年分别为48,33,27,24 TECU;日峰值TEC与F10.7存在显著相关,月均值相关系数达到0.86,而与Ap指数则表现为弱相关; IRI-2020能较好地模拟昆明地区TEC的季节变化,但与观测值存在较大差异;均方根偏差值多集中在2~15 TECU,相对偏差百分比值主要在–85%~50%范围变化。对比结果表明IRI-2020的预测精度仍有待提高。

     

  • 图  1  2016-2019年F10.7Ap指数的变化情况

    Figure  1.  Variation conditions of F10.7 and Ap during 2016-2019

    图  2  TEC在2016-2019年季节平均的日变化(虚线为各季节平均最高值对应的时间)

    Figure  2.  Diurnal variations of seasonal average of TEC during 2016-2019 (Dotted line is the time corresponding to the average maximum value of each season)

    图  3  TEC日最大值和月均最大值与F10.7Ap指数之间的相关系数(R为线性相关系数,红色直线是线性拟合结果)

    Figure  3.  Correlation coefficients among daily and monthly averaged peak TEC with F10.7 and Ap (R is linear correlation coefficient, and the red line is linear fitting result)

    图  4  TEC观测值与IRI-2020模拟的季节平均值对比

    Figure  4.  Comparison of seasonal average of TEC from monitor and modeled by IRI-2020

    图  5  IRI-2020对观测值的均方根偏差值在不同季节的变化

    Figure  5.  Variations of REMS for TEC from IRI-2020 with observation in different seasons

    图  6  IRI-2020对观测值的相对偏差在2016-2019年中随季节和时间的分布

    Figure  6.  Daily and seasonal distributions of the relative difference of IRI-2020 with observation regardless seasons during 2016-2019

    表  1  2016-2019年各季节及全年TEC最大 平均值(单位TECU)

    Table  1.   Seasonal and annually average peak value of TEC during 2016-2019 (unit TECU)

    2016201720182019
    53.9735.2729.4425.98
    38.3625.3525.0219.7
    40.9735.6725.7822.18
    41.8623.0521.5216.99
    全年48.2932.5127.3523.98
    下载: 导出CSV

    表  2  F10.7Ap指数与峰值TEC 在不同年份 的相关系数统计值

    Table  2.   Statistical values of correlation coefficients among F10.7 and Ap with TEC in different years

    F10.7与峰值TECAp与峰值TEC
    每日月均每日月均
    2016-20170.610.830.090.39
    2018-20190.080.040.190.62
    下载: 导出CSV
  • [1] 刘立波, 万卫星. 我国空间物理研究进展[J]. 地球物理学报, 2014, 57(11): 3493-3501 doi: 10.6038/cjg20141101

    LIU Libo, WAN Weixing. A brief overview on the issue on space physics and space weather[J]. Chinese Journal of Geophysics, 2014, 57(11): 3493-3501 doi: 10.6038/cjg20141101
    [2] PANDA S K, GEDAM S S, RAJARAM G. Study of Ionospheric TEC from GPS observations and comparisons with IRI and SPIM model predictions in the low latitude anomaly Indian subcontinental region[J]. Advances in Space Research, 2015, 55(8): 1948-1964 doi: 10.1016/j.asr.2014.09.004
    [3] KLOBUCHAR J A. Ionospheric effects on GPS[J]. GPS World, 1991, 2(4): 48-51
    [4] OLUWADARE T S, THAI C N, AKALA A O O, et al. Characterization of GPS-TEC over African equatorial ionization anomaly (EIA) region during 2009-2016[J]. Advances in Space Research, 2019, 63(1): 282-301 doi: 10.1016/j.asr.2018.08.044
    [5] BALAN N, BAILEY G J. Equatorial plasma fountain and its effects: possibility of an additional layer[J]. Journal of Geophysical Research: Space Physics, 1995, 100(A11): 21421-21432 doi: 10.1029/95JA01555
    [6] 萧佐, 张东和. 通过GPS测量数据研究电离层电子总含量的逐日变化[J]. 空间科学学报, 2000, 20(2): 97-102 doi: 10.3969/j.issn.0254-6124.2000.02.001

    XIAO Zuo, ZHANG Donghe. An approach to study the day-to-day variations of ionospheric TEC directly by GPS time-delay signals[J]. Chinese Journal of Space Science, 2000, 20(2): 97-102 doi: 10.3969/j.issn.0254-6124.2000.02.001
    [7] 徐继生, 朱劼, 程光晖. 2004年11月强磁暴期间武汉电离层TEC的响应和振幅闪烁特征的GPS观测[J]. 地球物理学报, 2006, 49(4): 950-956 doi: 10.3321/j.issn:0001-5733.2006.04.004

    XU Jisheng, ZHU Jie, CHENG Guanghui. GPS observations of ionospheric effects of the major storm of Nov. 7-10, 2004[J]. Chinese Journal of Geophysics, 2006, 49(4): 950-956 doi: 10.3321/j.issn:0001-5733.2006.04.004
    [8] 刘国其, 龚建村, 黄文耿, 等. 太阳活动低年低纬地区VTEC变化特性分析[J]. 空间科学学报, 2013, 33(3): 270-276 doi: 10.11728/cjss2013.03.270

    LIU Guoqi, GONG Jiancun, HUANG Wengeng, et al. Analysis of variation characteristic of VTEC in the low latitude region during low solar activity[J]. Chinese Journal of Space Science, 2013, 33(3): 270-276 doi: 10.11728/cjss2013.03.270
    [9] BILITZA D, ALTADILL D, TRUHLIK V, et al. International reference ionosphere 2016: from ionospheric climate to real-time weather predictions[J]. Space Weather, 2017, 15(2): 418-429 doi: 10.1002/2016SW001593
    [10] XIANG Y, YUAN Y B, WANG N B. Comparison of IRI-2012 and rapid GIMs with GNSS-derived TEC over China[M]//SUN J D, JIAO W H, WU H T, et al. China Satellite Navigation Conference (CSNC) 2014 Proceedings: Volume II. Berlin, Heidelberg: Springer, 2014: 465-476
    [11] WAN Q T, MA G Y, LI J H, et al. A comparison of GPS-TEC with IRI-TEC at low latitudes in China in 2006[J]. Advances in Space Research, 2017, 60(2): 250-256 doi: 10.1016/j.asr.2016.12.002
    [12] WAN Q T, MA G Y, LI J H, et al. Performance evaluation of IRI-2016 with GPS-derived TEC at the meridian of 110o E in China of 2014[J]. Journal of Atmospheric and Solar–Terrestrial Physics, 2020, 201: 105206 doi: 10.1016/j.jastp.2020.105206
    [13] DAVIES K. Ionospheric Radio[M]. London: Peter Peregrinus Ltd, 1990
    [14] BAGIYA M S, JOSHI H P, IYER K N, et al. TEC variations during low solar activity period (2005– 2007) near the equatorial ionospheric anomaly crest region in India[J]. Annales Geophysicae, 2009, 27(3): 1047-1057 doi: 10.5194/angeo-27-1047-2009
    [15] RISHBETH H, LYON A J, PEART M. Diffusion in the equatorial F layer[J]. Journal of Geophysics Research, 1963, 68(9): 2559-2569 doi: 10.1029/JZ068i009p02559
    [16] TITHERIDGE J E. Winds in the ionosphereA review[J]. Journal of Atmospheric and Terrestrial Physics, 1995, 57(14): 1681-1714 doi: 10.1016/0021-9169(95)00091-F
    [17] FEJER B G. Low latitude electrodynamic plasma drifts: a review[J]. Journal of Atmospheric and Terrestrial Physics, 1991, 53(8): 677-693 doi: 10.1016/0021-9169(91)90121-M
    [18] RISHBETH H, MÜLLER-WODARG I C F, ZOU L, et al. Annual and semiannual variations in the ionospheric F2-layer: II. Physical discussion[J]. Annales Geophysicae, 2000, 18(8): 945-956 doi: 10.1007/s00585-000-0945-6
    [19] AKALA A O O, OYEDOKUN O J, BELLO D. Seasonal variation of quiet-time TEC over West and Central African equatorial/low-latitude ionosphere (2011-2014)[J]. Acta Geophysica, 2021, 69(6): 2483-2495 doi: 10.1007/s11600-021-00679-2
    [20] BHUYAN P K, BORAH R R. TEC derived from GPS network in India and comparison with the IRI[J]. Advances in Space Research, 2007, 39(5): 830-840 doi: 10.1016/j.asr.2006.12.042
    [21] WU C C, LIOU K, SHAN S J, et al. Variation of ionospheric total electron content in Taiwan region of the equatorial anomaly from 1994 to 2003[J]. Advances in Space Research, 2008, 41(4): 611-616 doi: 10.1016/j.asr.2007.06.013
    [22] ABDU M A, BRUM C G M, BATISTA I S, et al. Solar flux effects on equatorial ionization anomaly and total electron content over Brazil: observational results versus IRI representations[J]. Advances in Space Research, 2008, 42(4): 617-625 doi: 10.1016/j.asr.2007.09.043
    [23] KOURIS S S, POLIMERIS K V, Cander L R, et al. Solar and latitude dependence of TEC and SLAB thickness[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2008, 70(10): 1351-1365 doi: 10.1016/j.jastp.2008.03.009
    [24] DABAS R S, LAKSHMI D R, REDDY B M. Solar activity dependence of ionospheric electron content and slab thickness using different solar indices[J]. Pure and Applied Geophysics, 1993, 140(4): 721-728 doi: 10.1007/BF00876585
    [25] PATEL N C, KARIA S P, PATHAK K N. GPS-TEC variation during low to high solar activity period (2010-2014) under the northern crest of Indian equatorial ionization anomaly region[J]. Positioning, 2017, 8(2): 13-35 doi: 10.4236/pos.2017.82002
    [26] LISSA D, VENKATESH K, PRASAD D S V V D, et al. GPS TEC variations under quiet and disturbed geomagnetic conditions during the descending phase of 24 th solar cycle over the Indian equatorial and low latitude regions[J]. Advances in Space Research, 2021, 68(4): 1836-1849 doi: 10.1016/j.asr.2021.04.021
    [27] BHUYAN P K, HAZARIKA R. GPS TEC near the crest of the EIA at 95°E during the ascending half of solar cycle 24 and comparison with IRI simulations[J]. Advances in Space Research, 2013, 52(7): 1247-1260 doi: 10.1016/j.asr.2013.06.029
    [28] CHAKRABORTY M, KUMAR S, KUMAR DE B, et al. Latitudinal characteristics of GPS derived ionospheric TEC: a comparative study with IRI 2012 model[J]. Annals of Geophysics, 2014, 57(5): A0539
    [29] KUMAR S, TAN E L, MURTI D S. Impacts of solar activity on performance of the IRI-2012 model predictions from low to mid latitudes[J]. Earth, Planets and Space, 2015, 67: 42 doi: 10.1186/s40623-015-0205-3
    [30] COÏSSON P, RADICELLA S M. Ionospheric topside models compared with experimental electron density profiles[J]. Annals of Geophysics, 2005, 48(3): 497-503
    [31] KARIA S P, PATEL N C, PATHAK K N. A comparison of TEC predicted by IRI-2012 with that measured at three different stations in low latitude Indian region for the years (2010-2012)[J]. Advances in Space Research, 2017, 60(2): 238-249 doi: 10.1016/j.asr.2016.10.022
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  171
  • HTML全文浏览量:  69
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-08
  • 修回日期:  2022-12-28
  • 网络出版日期:  2023-03-10

目录

    /

    返回文章
    返回