留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于上层大气数值模型的X射线传输特性

吕致辉 韦飞 张轩谊 彭松武 冯鹏远

吕致辉, 韦飞, 张轩谊, 彭松武, 冯鹏远. 基于上层大气数值模型的X射线传输特性[J]. 空间科学学报, 2023, 43(4): 640-646. doi: 10.11728/cjss2023.04.2022-0063
引用本文: 吕致辉, 韦飞, 张轩谊, 彭松武, 冯鹏远. 基于上层大气数值模型的X射线传输特性[J]. 空间科学学报, 2023, 43(4): 640-646. doi: 10.11728/cjss2023.04.2022-0063
LÜ Zhihui, WEI Fei, ZHANG Xuanyi, PENG Songwu, FENG Pengyuan. X-ray Transmission Characteristics Based on Numerical Model of Upper Atmosphere (in Chinese). Chinese Journal of Space Science, 2023, 43(4): 640-646 doi: 10.11728/cjss2023.04.2022-0063
Citation: LÜ Zhihui, WEI Fei, ZHANG Xuanyi, PENG Songwu, FENG Pengyuan. X-ray Transmission Characteristics Based on Numerical Model of Upper Atmosphere (in Chinese). Chinese Journal of Space Science, 2023, 43(4): 640-646 doi: 10.11728/cjss2023.04.2022-0063

基于上层大气数值模型的X射线传输特性

doi: 10.11728/cjss2023.04.2022-0063 cstr: 32142.14.cjss2023.04.2022-0063
基金项目: 国家重点研发计划项目资助(2021 YFA0718600)
详细信息
    作者简介:
  • 中图分类号: P351,O434.1

X-ray Transmission Characteristics Based on Numerical Model of Upper Atmosphere

  • 摘要: 核爆炸的大部分能量是以X射线形式释放的,研究X射线辐射特性对于天基核爆事件监测,当量反演都具有一定参考价值。根据核爆炸X射线能谱特性,构建了黑体辐射模型;根据NRLMSIS大气模型成分数据和高度密度数据,构建大气分层数值模型,并结合NIST数据库,构建分层大气质量吸收系数模型,提高了大气模型与大气质量吸收系数模型准确度。使用数值模拟程序对X射线在大气中的传输特性进行研究,模拟在临近空间高度核爆炸产生的X射线经过大气吸收后的能谱特性以及不同海拔高度点位的能注量。结果表明,在检测点高度恒定的情况下,斜径角变小会增大X射线传输路径,X射线经过的大气吸收路径越长,能谱峰值越往高能处偏移。在相同高度下,爆炸点的正上方处能注量最大,其他位置随着斜径角减小能注量呈指数级衰减。

     

  • 图  1  归一化黑体谱

    Figure  1.  Normalized blackbody spectrum

    图  2  大气中各成分密度与海拔高度关系

    Figure  2.  Relationship between composition density and altitude

    图  3  大气中各成分质量分数与海拔高度关系

    Figure  3.  Relationship between ingredient mass fraction and altitude

    图  4  光子能量与元素质量吸收系数关系

    Figure  4.  Relationship between photon energy and element mass attenuation coefficient

    图  5  大气质量吸收系数与高度和光子能量关系

    Figure  5.  Relationship between photon energy, altitude and element mass attenuation coefficient

    图  6  点位说明

    Figure  6.  Schematic diagram of point description

    图  7  不同爆高在Hs高度处的能谱

    Figure  7.  Energy spectra of different explosion heights at Hs height

    图  8  海拔1000 km等高面上能注量分布

    Figure  8.  Energy fluence distribution on the 1000 km contour surface

    表  1  爆炸当量与等效黑体温度对照

    Table  1.   Explosion equivalent versus equivalent black body temperature

    当量 / kt1101001000
    等效黑体温度 / keV1258
    下载: 导出CSV

    表  2  未经大气吸收后的能注量数值 (单位 keV·cm–2)

    Table  2.   Energy fluence value without atmospheric absorption (Unit keV·cm–2)

    高度 / km斜径角 / (o)
    90120150180
    6001.89×10111.37×10123.42×10124.44×1012
    10001.08×10115.25×10111.20×10121.53×1012
    100006.36×1099.70 ×1091.31×10101.45 ×1010
    200002.21×1092.83 ×1093.39 ×1093.62 ×109
    下载: 导出CSV

    表  3  经过大气吸收后的能注量数值 (单位 keV·cm–2)

    Table  3.   Energy fluence value after atmospheric absorption (Unit keV·cm–2)

    高度 / km斜径角 / (o)
    90120150180
    6002.227.88×1071.08×1092.09×109
    10001.273.02×1073.77×1087.22×108
    100000.075.57×1054.11×1066.84×106
    200000.031.63×1051.07×1061.70×106
    下载: 导出CSV
  • [1] ZHANG Dawei. Theoretical and Laboratorial Studies of Radiative Characteristics of Soft X-Rays from High-Altitude Nuclear Explosions[D]. Changchun: Changchun Institute of Optics, Fine Mechanicsand Physics, Chinese Academy of Sciences, 2006
    [2] 欧阳建明, 马燕云, 邵福球, 等. 高空核爆炸X射线电离的时空分布数值模拟[J]. 物理学报, 2012, 61(24): 242801 doi: 10.7498/aps.61.242801

    OUYANG Jianming, MA Yanyun, SHAO Fuqiu, et al. Numerical simulation of temporal and spatial distribution of X-ray ionization with high-altitude nuclear explosion[J]. Acta Physica Sinica, 2012, 61(24): 242801 doi: 10.7498/aps.61.242801
    [3] AGENCY U S D A. The Effects of Nuclear Weapons[M]. Washington: U. S. Atomic Energy Commission, 1962
    [4] HOERLIN H. Artificial Aurora and Upper Atmospheric Shock Produced by Teak[R]. Los Alamos: Los Alamos Scientific Laboratory, 1961
    [5] HOERLIN H. United States High-altitude Test Experiences. A Review Emphasizing the Impact on the Environment[R]. Los Alamos: Los Alamos National Lab, 1976
    [6] QIAO Dengjiang. Introduction to Nuclear Explosion Physics[M]. Beijing: Atomic Energy Press, 1988
    [7] XU Heng. Research on the Energy Deposition of X-Rays and Characteristic of Thermal Radiation in the High Altitude Nuclear Detonation[D]. Changsha: National University of Defense Technology, 2020
    [8] RYBICKI G B, LIGHTMAN A P. Radiative Processes in Astrophysics[M]. Hoboken: Wiley, 2008
    [9] TAYLOR B N. The International System of Units (SI)[M]. Washington: US Department of Commerce, Technology Administration, National Institute of Standards and Technology, 2002
    [10] PEDROTTI F L, PEDROTTI L M, PEDROTTI L S. Introduction to Optics[M]. 3rd ed. Cambridge: Cambridge University Press, 2017
    [11] State Bureau of Technical Supervision. GB/T 3102.6-1993 Quantities and Units—Light and Related Electromagnetic Radiations[S]. Beijing: State Bureau of Technical Supervision, 1993
    [12] WANG Jianguo, NIU Shengli, ZHANG Dianhui, et al. Manual of Parameters for High-Altitude Nuclear Explosion Effects[M]. Beijing: Atomic Energy Press, 2010
    [13] 高芬, 安莹, 董威. 基于MATLAB的黑体辐射量计算[J]. 光学与光电技术, 2005, 3(5): 30-32 doi: 10.3969/j.issn.1672-3392.2005.05.009

    GAO Fen, AN Ying, DONG Wei. Calculation of the blackbody radiation quantity based on MATLAB[J]. Optics & Optoelectronic Technology, 2005, 3(5): 30-32 doi: 10.3969/j.issn.1672-3392.2005.05.009
    [14] SINGH H B. Composition, Chemistry, and Climate of the Atmosphere[M]. New York: Van Nostrand Reinhold, 1995
    [15] National Oceanic and Atmospheric Administration of China, National Aeronautics and Space Administration and United States Air Force Department. U. S. Standard Atmosphere, 1976[M]. REN Xian, QIAN Zhimin, trans. Beijing: Science Press, 1982
    [16] ZHAO Jiuzhang. Physics of the Upper Atmosphere: Volume I[M]. Beijing: Science Press, 1965
    [17] JIA Yue, NASA. NRLMSIS atmosphere model[EB/OL]. (2020-09)[2023-01-14]. https://ccmc.gsfc.nasa.gov/models/NRLMSIS~v2.0
    [18] HUBBELL J H, SELTZER S M. X-Ray Mass Attenuation Coefficients[EB/OL]. (2004-07)[2023-01-14]. https://www.nist.gov/pml/x-ray-mass-attenuation-coefficients
    [19] ATTIX F H. Energy-absorption coefficients for γ-rays in compounds or mixtures[J]. Physics in Medicine & Biology, 1984, 29(7): 869-871
    [20] CHANTLER C T, OLSEN K, DRAGOSET R A, et al. X-Ray Form Factor, Attenuation, and Scattering Tables[EB/OL]. (2005-01)[2023-01-14]. https://www.nist.gov/pml/x-ray-form-factor-attenuation-and-scattering-tables
    [21] 欧阳建明, 马燕云, 邵福球, 等. 高空核爆炸下大气的X射线电离及演化过程数值模拟[J]. 物理学报, 2012, 61(8): 135-140

    OUYANG Jianming, MA Yanyun, SHAO Fuqiu, et al. Numerical simulation of X-ray ionization and atmospheric temporal evolutions with high-altitude nuclear explosions[J]. Acta Physica Sinica, 2012, 61(8): 135-140
    [22] 曹鼎汉. 斯特藩-玻尔兹曼辐射定律及其应用[J]. 红外技术, 1994(3): 46-48

    CAO Dinghan. Stefan-Boltzmann radiation law and applications[J]. Infrared Technology, 1994(3): 46-48
    [23] MOHR P J, TAYLOR B N. CODATA recommended values of the fundamental physical constants: 1998[J]. Reviews of Modern Physics, 2000, 72(2): 351-495 doi: 10.1103/RevModPhys.72.351
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  324
  • HTML全文浏览量:  134
  • PDF下载量:  35
  • 被引次数: 

    0(来源:Crossref)

    0(来源:其他)

出版历程
  • 收稿日期:  2022-11-03
  • 录用日期:  2023-06-25
  • 修回日期:  2023-03-10
  • 网络出版日期:  2023-06-25

目录

    /

    返回文章
    返回