Development of a Low-power Ionosonde in Yinchuan and Analysis of Preliminary Test Results
-
摘要: 研制了一台低功耗电离层垂测仪,该系统采用新型Delta天线、可变接收时长和类巴克码脉冲编码设计,安装在宁夏银川地震监测试验场。2021年8月开展了全天连续观测试验,观测获得的科学数据验证了垂测仪的探测能力和探测效率。试验结果表明:F2层临界频率日变化与银川地区太阳高度角日变化趋势存在一定的正相关性;采用图像处理技术实现了原始频高图中O/X波自动分离,获得两极化波临界频率之差约为0.7 MHz,与银川当地0.5倍磁旋频率0.7 MHz基本一致。该电离层垂测仪系统运行稳定,试验数据可靠,对后续星地联合多维度探测和信号处理具有一定的算法参考和数据积累意义。Abstract: A low-power ionosonde is developed, with a pair of new kind Delta antenna and barker-liked coding technique. A varied sampling duration is utilized in the receiving windows to improve the test efficiency. The ionosonde is built in Yinchuan Earthquake Monitoring Test Site, Ningxia Hui Autonomous Region of China. The continuous observation test was carried out for a whole day in August 2021. The preliminary test result shows that the diurnal variation of the critical frequency of the F2 layer has a positive correlation as of the solar elevation angle in Yinchuan area. An image processing technique is employed for the automatic separation of the O/X waves in the original ionograms. The difference between the critical frequencies of the two polarized waves is about 0.7 MHz, which is basically consistent with the local 0.5 times magnetic spin frequency of Yinchuan, which is 0.7 MHz also. The operation of the ionosonde is stable, and the obtained data are reliable, which provides a valuable algorithm reference and data accumulation significance for the subsequent in-depth processing of satellite-ground joint multi-dimensional data.
-
Key words:
- Ionosonde /
- Barker codes /
- Image processing /
- O/X wave separation /
- Critical frequency
-
表 1 垂测仪主要系统参数
Table 1. Main parameters of the ionosonde
指标名称 设计参数 探测频率/MHz 1~30 探测高度/km 70~600 步进频率间隔/kHz 25 脉冲持续宽度/µs 400 发射峰值功率/W 400 接收机带宽/kHz 100 高度分辨率/km 1.5 A/D采样率/MHz 40 A/D采样位数/bit 12 脉冲编码方式 类Barker码 天线形式 Delta天线 表 2 Delta天线主要参数
Table 2. Main parameters of the Delta antenna
天线相关指标 本项目设计参数 W/m 50 H/m 36 α/(°) 26 β/(°) 54 匹配负载/Ω 600 发射功率/W 约400 表 3 三种不同编码方式性能比对
Table 3. Performance comparison of the three coding methods
码型 PSL/dB LSL/dB NS/dB 脉宽/μs 探测周期 高度分辨率/km 13位巴克码 –11.14 –0.35 5.57 30 T 4.5 16位互补码 –5.06 ― 6.02 25 2 T 3.75 40位类巴克码 –11.25 0.97 8 10 T 1.5 表 4 日间O波临界频率与太阳高度角对比
Table 4. Comparison between the critical frequency of O-wave and the solar altitude angle in daytime
时间(LT) 10:06 11:31 12:56 13:08 14:32 15:30 16:24 17:15 O波临界频率/MHz 5.7 6.2 7.0 7.2 6.5 5.6 5.2 5.0 太阳高度角/(°) 50 61 75 75 70 60 48 37 -
[1] 郝永强, 李泉翰, 郭建广, 等. 利用中国GPS站网对地震波引发的大尺度电离层扰动的观测[J]. 地球物理学报, 2021, 64(11): 3925-3932 doi: 10.6038/cjg2021P0088HAO Yongqiang, LI Quanhan, GUO Jianguang, et al. Imaging of the large-scale ionospheric disturbances induced by seismic waves using GPS network in China[J]. Chinese Journal of Geophysics, 2021, 64(11): 3925-3932 doi: 10.6038/cjg2021P0088 [2] ZHAO S F, SHEN X H, LIAO L, et al. A lithosphere-atmosphere-ionosphere coupling model for ELF electromagnetic waves radiated from seismic sources and its possibility observed by the CSES[J]. Science China Technological Sciences, 2021, 64(11): 2551-2559 doi: 10.1007/s11431-021-1934-5 [3] 杨超, 雍珊珊, 王新安, 等. 基于张衡一号电磁卫星数据对印尼Ms 7.4地震的研究[J]. 北京大学学报(自然科学版), 2021, 57(6): 997-1005YANG Chao, YONG Shanshan, WANG Xin’an, et al. Research on Indonesia Ms 7.4 earthquake based on data of Zhangheng-1 electromagnetic satellite[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2021, 57(6): 997-1005 [4] 王兰炜, 胡哲, 申旭辉, 等. 电磁监测试验卫星(张衡一号)数据处理方法和流程[J]. 遥感学报, 2018, 22(S1): 39-55 doi: 10.11834/jrs.20187360WANG Lanwei, HU Zhe, SHEN Xuhui, et al. Data processing methods and procedures of CSES satellite[J]. National Remote Sensing Bulletin, 2018, 22(S1): 39-55 doi: 10.11834/jrs.20187360 [5] 丁宗华. 电离层频高图自动度量与分析的方法研究[D]. 武汉: 中国科学院研究生院(武汉物理与数学研究所), 2006DING Zonghua. Studies on Autoscaling and Analysis of Ionograms[D]. Wuhan: Wuhan Institute of Physics and Mathematics & Institute of Geology and Geophysics, Chinese Academy of Sciences, 2006 [6] REINISCH B W, GALKIN I A, KHMYROV G M, et al. New Digisonde for research and monitoring applications[J]. Radio Science, 2009, 44(1): RS0A24 [7] 朱正平, 宁百齐, 孙凤娄, 等. 电离层数字测高仪被动接收观测模式研究[J]. 空间科学学报, 2009, 29(4): 389-396 doi: 10.11728/cjss2009.04.389ZHU Zhengping, NING Baiqi, SUN Fenglou, et al. Study of passive receiving observation mode for ionospheric digital ionosonde[J]. Chinese Journal of Space Science, 2009, 29(4): 389-396 doi: 10.11728/cjss2009.04.389 [8] 王顺, 陈紫微, 张锋, 等. CAS-DIS数字电离层测高仪系统研制[J]. 空间科学学报, 2014, 34(6): 849-857 doi: 10.11728/cjss2014.06.849WANG Shun, CHEN Ziwei, ZHANG Feng, et al. A new design for digital ionosonde[J]. Chinese Journal of Space Science, 2014, 34(6): 849-857 doi: 10.11728/cjss2014.06.849 [9] GONG W L, CUI X, PAN L Y. Design and application of the digital multifunctional ionosonde[J]. IET Radar, Sonar & Navigation, 2016, 10(7): 1303-1309 [10] 靳梦雅, 郭伟, 刘鹏, 等. 基于FPGA的高性能电离层测高仪数控系统设计[J]. 空间科学学报, 2021, 41(4): 580-588 doi: 10.11728/cjss2021.04.580JIN Mengya, GUO Wei, LIU Peng, et al. Design of digital control system for high-performance ionosonde based on FPGA[J]. Chinese Journal of Space Science, 2021, 41(4): 580-588 doi: 10.11728/cjss2021.04.580 [11] 魏子东, 霍小平, 贺生云, 等. 固定式光伏最佳水平倾角及朝向的模拟分析——以宁夏银川地区为例[J]. 西安建筑科技大学学报(自然科学版), 2012, 44(5): 700-706WEI Zidong, HUO Xiaoping, HE Shengyun, et al. Simulation and analysis on the optimum horizontal dip angle and aspect of a fixed PV——taking Yinchuan City of Ningxia as a case[J]. Journal of Xian University of Architecture Technology (Natural Science Edition), 2012, 44(5): 700-706 [12] 刘立波, 陈一定, 张瑞龙, 等. 电离层日变化特性研究简述[J]. 地球与行星物理论评, 2021, 52(6): 647-661LIU Libo, CHEN Yiding, ZHANG Ruilong, et al. Some investigations of ionospheric diurnal variation[J]. Reviews of Geophysics and Planetary Physics, 2021, 52(6): 647-661 [13] 徐中华, 刘瑞源, 刘顺林, 等. 南极中山站电离层F2层临界频率变化特征[J]. 地球物理学报, 2006, 49(1): 1-8 doi: 10.3321/j.issn:0001-5733.2006.01.001XU Zhonghua, LIU Ruiyuan, LIU Shunlin, et al. Variations of the ionospheric F2 layer critical frequency at Zhongshan Station, Antarctica[J]. Chinese Journal of Geophysics, 2006, 49(1): 1-8 doi: 10.3321/j.issn:0001-5733.2006.01.001 [14] 刘汉. 垂直探测电离图F层描迹自动判读方法的研究[D]. 青岛: 中国海洋大学, 2011LIU Han. Study on Automatic Scaling of the F Layer Traces in Ionogram[D]. Qingdao: Ocean University of China, 2011 [15] 胡辉, 周晨, 姜春华, 等. 一种提取频高图中O波描迹新方法[J]. 地球物理学进展, 2018, 33(4): 1351-1357 doi: 10.6038/pg2018BB0355HU Hui, ZHOU Chen, JIANG Chunhua, et al. Method for automatic scaling of O wave traces from ionograms[J]. Progress in Geophysics, 2018, 33(4): 1351-1357 doi: 10.6038/pg2018BB0355 [16] 刘闯. 基于图像处理的频高图F2层描迹自动解译研究[D]. 青岛: 中国海洋大学, 2014LIU Chuang. Study on Automatic Measurement of Layer F2 in Ionograms Based on Image Processing[D]. Qingdao: Ocean University of China, 2014 [17] 王顺, 陈紫微, 张锋, 等. 一种数字电离层测高仪系统中O波与X波的分离方法[J]. 空间科学学报, 2014, 34(2): 186-193 doi: 10.11728/cjss2014.02.186WANG Shun, CHEN Ziwei, ZHANG Feng, et al. A method for separating O wave and X wave in digital ionosonde[J]. Chinese Journal of Space Science, 2014, 34(2): 186-193 doi: 10.11728/cjss2014.02.186 [18] 吴仁喜. 基于BP神经网络的电离层频高图F层自动度量[D]. 武汉: 中南民族大学, 2015WU Renxi. Automatic Scaling of F Layer for Ionogram Based on BP Neural Network[D]. Wuhan: South-Central Minzu University, 2015 [19] 孙直申, 刘小军, 赵博. 互补码在电离层探测中的应用[J]. 科学技术与工程, 2011, 11(21): 5047-5052 doi: 10.3969/j.issn.1671-1815.2011.21.021SUN Zhishen, LIU Xiaojun, ZHAO Bo. Application of complementary codes in ionosphere sounding[J]. Science Technology and Engineering, 2011, 11(21): 5047-5052 doi: 10.3969/j.issn.1671-1815.2011.21.021 [20] 陈锟. 电离层数字测高仪的研制[D]. 武汉: 中南民族大学, 2009: 6-26CHEN Kun. Design of the Ionosonde[D]. Wuhan: South-Central Minzu University, 2009: 6-26 -
-