留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

可持续发展目标空间观测与评估

陈方 贾慧聪 王雷

陈方, 贾慧聪, 王雷. 可持续发展目标空间观测与评估[J]. 空间科学学报, 2023, 43(6): 973-985. doi: 10.11728/cjss2023.06.2023-0108
引用本文: 陈方, 贾慧聪, 王雷. 可持续发展目标空间观测与评估[J]. 空间科学学报, 2023, 43(6): 973-985. doi: 10.11728/cjss2023.06.2023-0108
CHEN Fang, JIA Huicong, WANG Lei. Spatial Observation and Assessment of Sustainable Development Goals (in Chinese). Chinese Journal of Space Science, 2023, 43(6): 973-985 doi: 10.11728/cjss2023.06.2023-0108
Citation: CHEN Fang, JIA Huicong, WANG Lei. Spatial Observation and Assessment of Sustainable Development Goals (in Chinese). Chinese Journal of Space Science, 2023, 43(6): 973-985 doi: 10.11728/cjss2023.06.2023-0108

可持续发展目标空间观测与评估

doi: 10.11728/cjss2023.06.2023-0108 cstr: 32142.14.cjss2023.06.2023-0108
基金项目: 国家重点研发计划项目资助(2022 YFC3800700)
详细信息
    作者简介:
  • 中图分类号: P715

Spatial Observation and Assessment of Sustainable Development Goals

  • 摘要: 联合国《变革我们的世界:2030年可持续发展议程》已实施过半,国际社会广泛关切2030年议程前半程的有益经验和不利教训,并为后半程和未来可持续发展寻找指引和方向。及时、准确数据的缺失,仍然是制约人类应对长期、短期可持续发展问题的短板,更是阻碍可持续发展目标(Sustainable Development Goals, SDGs)进展监测、实施决策的瓶颈。作为全面、综合、整体研究地球系统的重要手段,空间观测技术是弥补当前SDGs指标统计数据不足、时空信息缺失的重要方法。本文介绍了空间观测技术在监测和评估SDG2零饥饿、SDG6清洁饮水和卫生设施、SDG7经济适用的清洁能源、SDG11可持续城市和社区、SDG13气候行动、SDG14水下生物和SDG 15陆地生物等7个可持续发展目标的研究进展及挑战,并对SDGs指标空间观测体系建设、空间观测数据共享和应用、SDGs监测评估方法研究等进行探讨。

     

  • 图  1  基于空间观测技术的全球森林覆盖分布

    Figure  1.  Global forests cover distribution based on spatial observation technology

    图  2  基于统计数据的全球国别尺度森林覆盖率分布

    Figure  2.  Global forest coverage distribution at the national scale based on statistical data

  • [1] UN. Transforming Our World: the 2030 Agenda for Sustainable Development[R/OL]. (2015-10-21)[2023-08-20]. https://sdgs.un.org/2030agenda
    [2] UN. The Sustainable Development Goals Report 2022[R/OL]. (2022-07-12)[2022-08-22]. https://www.un.org/development/desa/dspd/2022/07/sdgs-report/
    [3] SACHS J, LAFORTUNE G, KROLL C, et al. From Crisis to Sustainable Development: the SDGs as Roadmap to 2030 and Beyond. Sustainable Development Report 2022[R/OL]. (2022-06-02) [2023-08-22]. https://www.sdgindex.org/reports/sustainable-development-report-2022/
    [4] UN. The Sustainable Development Goals Report 2023: Special Edition[R/OL]. (2023-07-10)[2023-08-20]. https://unstats.un.org/sdgs/report/2023/
    [5] OECD. A Territorial Approach to the Sustainable Development Goals[R/OL]. (2020-02-07)[2022-08-22]. https://www.oecd.org/cfe/a-territorial-approach-to-the-sustainable-development-goals-e86fa715-en.htm
    [6] 施建成, 郭华东, 董晓龙, 等. 中国空间地球科学发展现状及未来策略[J]. 空间科学学报, 2021, 41(1): 95-117 doi: 10.11728/cjss2021.01.095

    SHI Jiancheng, GUO Huadong, DONG Xiaolong, et al. Developments and future strategies of Earth science from space in China[J]. Chinese Journal of Space Science, 2021, 41(1): 95-117 doi: 10.11728/cjss2021.01.095
    [7] GUO H D, LIANG D, SUN Z C, et al. Measuring and evaluating SDG indicators with Big Earth Data[J]. Science Bulletin, 2022, 67(12): 1792-1801
    [8] 郭华东, 梁栋, 陈方, 等. 地球大数据促进联合国可持续发展目标实现[J]. 中国科学院院刊, 2021, 36(8): 874-884 doi: 10.16418/j.issn.1000-3045.20210707006

    GUO Huadong, LIANG Dong, CHEN Fang, et al. Big earth data facilitates sustainable development goals[J]. Bulletin of Chinese Academy of Sciences, 2021, 36(8): 874-884 doi: 10.16418/j.issn.1000-3045.20210707006
    [9] FAO. Tracking Progress on Food and Agriculture-Related SDG Indicators 2021: A Report on the Indicators under FAO Custodianship[R]. Rome: FAO, 2021. DOI: 10.4060/cb6872en
    [10] FAO, IFAD, UNICEF, et al. The State of Food Security and Nutrition in the World 2022. Repurposing Food and Agricultural Policies to Make Healthy Diets More Affordable[R]. Rome: FAO, IFAD, UNICEF, WFP, WHO, 2022. DOI: 10.4060/cc0639en
    [11] OECD, FAO. OECD-FAO Agricultural Outlook 2023-2032[OL]. (2022-07-06)[2023-08-22]. https://doi.org/10.1787/08801ab7-en
    [12] FAO. FAO and the SDGs. Indicators: Measuring Up to the 2030 Agenda for Sustainable Development[R]. Rome: FAO, 2017
    [13] FAO. FAO Stat: FAOSTAT Online Statistical Service Food and Agriculture Organization[OL]. (2023-07-17)[2023-08-22]. https://www.fao.org/faostat/en/#home
    [14] GENNARI P, ROSERO-MONCAYO J, TUBIELLO F N. The FAO contribution to monitoring SDGs for food and agriculture[J]. Nature Plants, 2019, 5(12): 1196-1197 doi: 10.1038/s41477-019-0564-z
    [15] 桑一铭, 卢亚晗, 王学, 等. 青藏高原“一江两河”地区耕地分布数据集[J]. 全球变化数据学报, 2022, 6(4): 619-630

    SANG Yiming, LU Yahan, WANG Xue, et al. Farmland Distribution Dataset of the Yarlung Zangbo–Lhasa–Nyangqu River Region of the Tibetan Plateau[J]. Journal of Global Change Data & Discovery, 2022, 6(4): 619-630
    [16] 申格, 刘航, 李丹丹, 等. 东北三省2020-2022年间10 m空间分辨率耕地资源空间分布数据集[J]. 农业大数据学报, 2023, 5(2): 2-8

    SHEN Ge, LIU Hang, LI Danan, et al. A 10 m spatial resolution dataset for the spatial distribution of cropland resources in the Three Northeastern Provinces from 2020 to 2022[J]. Journal of Agricultural Big Data, 2023, 5(2): 2-8
    [17] LIU N, XING Z Z, ZHAO R M, et al. Analysis of chlorophyll concentration in potato crop by coupling continuous wavelet transform and spectral variable optimization[J]. Remote Sensing, 2020, 12(17): 2826 doi: 10.3390/rs12172826
    [18] 王众娇, 魏茂盛, 郭凌峰, 等. 基于主成分分析的农作物空间分布信息提取[J]. 测绘与空间地理信息, 2021, 44(6): 114-115,119 doi: 10.3969/j.issn.1672-5867.2021.06.031

    WANG Zhongjiao, WEI Maosheng, GUO Lingfeng, et al. Extraction of crop spatial distribution information based onprincipal component analysis[J]. Geomatics & Spatial Information Technology, 2021, 44(6): 114-115,119 doi: 10.3969/j.issn.1672-5867.2021.06.031
    [19] ROY D P, YAN L. Robust Landsat-based crop time series modelling[J]. Remote Sensing of Environment, 2018, 238: 110810
    [20] 任鸿瑞, 张悦琦, 何奇瑾, 等. 基于FY-3 MERSI遥感数据的水稻种植分布提取[J]. 光谱学与光谱分析, 2023, 43(5): 1606-1611

    REN Hongrui, ZHANG Yueqi, HE Qijin, et al. Extraction of pddy rice planting area based on multi-temporal FY-3 MERSI remote sensing images[J]. Spectroscopy and Spectral Analysis, 2023, 43(5): 1606-1611
    [21] 周佳玮, 涂理林, 陈洪建, 等. 融合空间和时序遥感信息的深度学习水稻提取[J]. 地理空间信息, 2022, 20(2): 39-44

    ZHOU Jiawei, TU Lilin, CHEN Hongjian, et al. Deep learning-based rice paddy extraction by fusing spatial and temporal remote sensing information[J]. Geospatial Information, 2022, 20(2): 39-44
    [22] 蔡耀通, 刘书彤, 林辉, 等. 基于多源遥感数据的CNN水稻提取研究[J]. 国土资源遥感, 2020, 32(4): 97-104 doi: 10.6046/gtzyyg.2020.04.14

    CAI Yaotong, LIU Shutong, LIN Hui, et al. Extraction of paddy rice based on convolutional neural network using multi-source remote sensing data[J]. Remote Sensing for Land & Resources, 2020, 32(4): 97-104 doi: 10.6046/gtzyyg.2020.04.14
    [23] 董秀春, 刘忠友, 蒋怡, 等. 基于WorldView-2影像和语义分割模型的小麦分类提取[J]. 遥感技术与应用, 2022, 37(3): 564-570

    DONG Xiuchun, LIU Zhongyou, JIANG Yi, et al. Winter wheat extraction of worldView-2 image based on semantic segmentation method[J]. Remote Sensing Technology and Application, 2022, 37(3): 564-570
    [24] 刘惠楠, 王井利, 周斌, 等. 基于MODIS时序数据物候特征下的多源遥感玉米提取[J]. 江西农业学报, 2023, 35(4): 113-121

    LIU Huinan, WANG Jingli, ZHOU Bin, et al. Maize extraction by multi-source remote sensing based on phenological characteristics of MODIS time series data[J]. Acta Agriculturae Jiangxi, 2023, 35(4): 113-121
    [25] 张宏鸣, 谭紫薇, 韩文霆, 等. 基于无人机遥感的玉米株高提取方法[J]. 农业机械学报, 2019, 50(5): 241-250 doi: 10.6041/j.issn.1000-1298.2019.05.028

    ZHANG Hongming, TAN Ziwei, HAN Wenting, et al. Extraction method of maize height based on UAV remote sensing[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(5): 241-250 doi: 10.6041/j.issn.1000-1298.2019.05.028
    [26] 张东彦, 杨玉莹, 黄林生, 等. 结合Sentinel-2影像和特征优选模型提取大豆种植区[J]. 农业工程学报, 2021, 37(9): 110-119 doi: 10.11975/j.issn.1002-6819.2021.09.013

    ZHANG Dongyan, YANG Yuying, HUANG Linsheng, et al. Extraction of soybean planting areas combining Sentinel-2 images and optimized feature model[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(9): 110-119 doi: 10.11975/j.issn.1002-6819.2021.09.013
    [27] 张梦, 佘宝, 杨玉莹, 等. 基于无人机RGB影像的大豆种植区提取方法研究[J]. 浙江农业学报, 2023, 35(4): 952-961 doi: 10.3969/j.issn.1004-1524.2023.04.22

    ZHANG Meng, SHE Bao, YANG Yuying, et al. Study on extraction method of soybean planting areas based on unmanned aerial vehicle RGB image[J]. Acta Agriculturae Zhejiangensis, 2023, 35(4): 952-961 doi: 10.3969/j.issn.1004-1524.2023.04.22
    [28] WU Z T, THENKABAIL P S, MUELLER R, et al. Seasonal cultivated and fallow cropland mapping using MODIS-based automated cropland classification algorithm[J]. Journal of Applied Remote Sensing, 2014, 8(1): 083685 doi: 10.1117/1.JRS.8.083685
    [29] FISETTE T, DAVIDSON A, DANESHFAR B, et al. Annual space-based crop inventory for Canada: 2009-2014[M]//2014 IEEE Geoscience and Remote Sensing Symposium. Quebec City: IEEE, 2014: 5095-5098
    [30] KHANAL S, KUSHAL KC, FULTON J P, et al. Remote sensing in agriculture-accomplishments, limitations, and opportunities[J]. Remote Sensing, 2020, 12(22): 3783 doi: 10.3390/rs12223783
    [31] 刘逸竹, 吴文斌, 李召良, 等. 基于时间序列NDVI的灌溉耕地空间分布提取[J]. 农业工程学报, 2017, 33(22): 276-284 doi: 10.11975/j.issn.1002-6819.2017.22.036

    LIU Yizhu, WU Wenbin, LI Zhaoliang, et al. Extracting irrigated cropland spatial distribution in China based on time-series NDVI[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(22): 276-284 doi: 10.11975/j.issn.1002-6819.2017.22.036
    [32] 张凝, 杨贵军, 赵春江, 等. 作物病虫害高光谱遥感进展与展望[J]. 遥感学报, 2021, 25(1): 403-422 doi: 10.11834/jrs.20210196

    ZHANG Ning, YANG Guijun, ZHAO Chunjiang, et al. Progress and prospects of hyperspectral remote sensing technology for crop diseases and pests[J]. National Remote Sensing Bulletin, 2021, 25(1): 403-422 doi: 10.11834/jrs.20210196
    [33] 鲁军景, 孙雷刚, 黄文江. 作物病虫害遥感监测和预测预警研究进展[J]. 遥感技术与应用, 2019, 34(1): 21-32 doi: CNKI:SUN:YGJS.0.2019-01-003

    LU Junjing, SUN Leigang, HUANG Wenjiang. Research progress in monitoring and forecasting of crop diseases and pests by remote sensing[J]. Remote Sensing Technology and Application, 2019, 34(1): 21-32 doi: CNKI:SUN:YGJS.0.2019-01-003
    [34] HUANG W J, LU J J, YE H C, et al. Quantitative identification of crop disease and nitrogen-water stress in winter wheat using continuous wavelet analysis[J]. International Journal of Agricultural and Biological Engineering, 2018, 11(2): 145-152 doi: 10.25165/j.ijabe.20181102.3467
    [35] BERGER K, VERRELST J, FÉRET J B, et al. Crop nitrogen monitoring: Recent progress and principal developments in the context of imaging spectroscopy missions[J]. Remote Sensing of Environment, 2020, 242: 111758 doi: 10.1016/j.rse.2020.111758
    [36] YANG H B, YIN H, LI F, et al. Machine learning models fed with optimized spectral indices to advance crop nitrogen monitoring[J]. Field Crops Research, 2023, 293: 108844 doi: 10.1016/j.fcr.2023.108844
    [37] LIU B H, CHEN X P, MENG Q F, et al. Estimating maize yield potential and yield gap with agro-climatic zones in China-Distinguish irrigated and rainfed conditions[J]. Agricultural and Forest Meteorology, 2017, 239: 108-117 doi: 10.1016/j.agrformet.2017.02.035
    [38] KAMIR E, WALDNER F, HOCHMAN Z. Estimating wheat yields in Australia using climate records, satellite image time series and machine learning methods[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 160: 124-135 doi: 10.1016/j.isprsjprs.2019.11.008
    [39] UN Water. SummaryProgress Update 2021: SDG 6-Water and Sanitation for All[R/OL]. (2021-02-24) [2022-08-22]. https://www.unwater.org/publications/summary-progress-update-2021-sdg-6-water-and-sanitation-all
    [40] WHO, UN-HABITAT. Piloting the Monitoring Methodology and Initial Findings for SDG Indicator 6.3. 1[R]. Geneva: WHO, UNHABITAT, 2018
    [41] UNEP. Progress on Integrated Water Resources Management: Tracking SDG 6 Series - Global Indicator 6.5. 1 Updates and Acceleration Needs[R/OL]. (2021-08-23) [2022-08-22]. https://wedocs.unep.org/20.500.11822/36690
    [42] MCNABB David. E. Integrated Water Resource Management. In: Water Resource Management [M]. Palgrave Macmillan, Cham. New York, 2017. https://doi.org/10.1007/978-3-319-54816-6_14
    [43] 卢善龙, 贾立, 蒋云钟, 等. 联合国可持续发展目标6(清洁饮水与卫生设施)监测评估: 进展与展望[J]. 中国科学院院刊, 2021, 36(8): 904-913

    LU Shanlong, JIA Li, JIANG Yunzhong, et al. Progress and prospect on monitoring and evaluation of United Nations SDG 6 (Clean Water and Sanitation) target[J]. Bulletin of Chinese Academy of Sciences, 2021, 36(8): 904-913
    [44] SHEFFIELD J, WOOD E F, PAN M, et al. Satellite remote sensing for water resources management: Potential for supporting sustainable development in data-poor regions[J]. Water Resources Research, 2018, 54(12): 9724-9758 doi: 10.1029/2017WR022437
    [45] 朱永华, 罗平平, 张洁, 等. 两种重力卫星数据集的区域适用性分析[J]. 遥感信息, 2022, 37(1): 55-60

    ZHU Yonghua, LUO Pingping, ZHANG Jie, et al. Regional applicability analysis of two gravity satellite datasets[J]. Remote Sensing Information, 2022, 37(1): 55-60
    [46] 王玺森, 王迪, 雷秋良, 等. 内陆地表水体水质遥感监测研究进展[J]. 中国农业信息, 2022, 34(2): 1-15

    WANG Xisen, WANG Di, LEI Qiuliang, et al. Advances in the inland surface water quality monitoring byremotely sensed imagery[J]. China Agricultural Informatics, 2022, 34(2): 1-15
    [47] AMANI M, MAHDAVI S, AFSHAR M, et al. Canadian wetland inventory using Google Earth Engine: The first map and preliminary results[J]. Remote Sensing, 2019, 11(7): 842. doi: 10.3390/rs11070842
    [48] LIU Y, ZHANG H Q, ZHANG M, et al. Vietnam wetland cover map: using hydro-periods Sentinel-2 images and Google Earth Engine to explore the mapping method of tropical wetland[J]. International Journal of Applied Earth Observation and Geoinformation, 2022, 115: 103122 doi: 10.1016/j.jag.2022.103122
    [49] 钟燕飞, 吴浩, 刘寅贺. 湿地遥感制图研究现状与展望[J]. 中国科学基金, 2022, 36(3): 420-431

    ZHONG Yanfei, WU Hao, LIU Yanhe. Research status and prospects of remote sensing for wetland mapping[J]. Bulletin of National Natural Science Foundation of China, 2022, 36(3): 420-431
    [50] IEA. World Energy Outlook 2022[OL]. (2022-10-10)[2023-08-22]. https://www.iea.org/reports/world-energy-outlook-2022
    [51] IEA. Tracking SDG7: The Energy Progress Report, 2023[R/OL]. (2023-06-10)[2023-08-22]. https://www.iea.org/reports/tracking-sdg7-the-energy-progress-report-2023
    [52] IEA. World energy statistics April 2023 Edition (IEA Family and Beyond)[OL]. (2023-04-18)[2023-08-22]. https://www.iea.org/data-and-statistics/data-product/world-energy-statistics
    [53] 中国国家能源局. 国家能源局关于2020年度全国可再生能源电力发展监测评价结果的通报[OL]. (2021-06-20) [2022-08-22]. http://zfxxgk.nea.gov.cn/2021-06/20/c_1310039970.htm.
    [54] 宋婧, 王芳, 苗红, 等. 海外园区低碳发展指标体系: 赋能中国海外园区高质量发展[J]. 开发性金融研究, 2022(4): 48-59

    SONG Jing, WANG Fang, MIAO Hong, et al. Empowering high-quality development of overseas industrial parks –Chinese overseas industrial park low-carbon development indicator system[J]. Development Finance Research, 2022(4): 48-59
    [55] 刘芸, 宋善海, 李慧璇, 等. 基于高分卫星影像的复杂山区光伏电站信息提取[J]. 中低纬山地气象, 2023, 47(3): 88-92

    LIU Yun, SONG Shanhai, LI Huixuan, et al. Information extraction of complex mountain photovoltaic power stations based on GF satellite images[J]. Mid-low Latitude Mountain Meteorology, 2023, 47(3): 88-92
    [56] 于方圆, 曹家玮, 李发源, 等. 顾及对象特征的地面式光伏电站提取及减碳效益评估[J]. 地球信息科学学报, 2023, 25(3): 529-545 doi: 10.12082/dqxxkx.2023.220680

    YU Fangyuan, CAO Jiawei, LI Fayuan, et al. Ground photovoltaic power station extraction considering object characteristics and carbon reduction benefit evaluation[J]. Journal of Geo-Information Science, 2023, 25(3): 529-545 doi: 10.12082/dqxxkx.2023.220680
    [57] 谢燕妹, 马彩虹, 隋欣, 等. 2012-2021年东盟10国高耗能产业数据集[J]. 中国科学数据(中英文网络版), 2023: 1-10

    XIE Yanmei, MA Caihong, SUI Xin, et al. A dataset of high energy-consuming industrial products in the ASEAN during 2012-2021[J]. China Scientific Data, 2023: 1-10
    [58] 张飞民, 王澄海, 谢国辉, 等. 气候变化背景下未来全球陆地风、光资源的预估[J]. 干旱气象, 2018, 36(5): 725-732

    ZHANG Feimin, WANG Chenghai, XIE Guohui, et al. Projection of global wind and solar energy over land under different climate change scenarios during 2020-2030[J]. Journal of Arid Meteorology, 2018, 36(5): 725-732
    [59] 孙景博, 王阳, 杨晓帆, 等. 中国风光资源气候风险时空变化特征分析[J]. 中国电力, 2023, 56(5): 1-10

    SUN Jingbo, WANG Yang, YANG Xiaofan, et al. Analysis of spatial and temporal variation character of climate risks of wind and solar resources in China[J]. Electric Power, 2023, 56(5): 1-10
    [60] United Nations Department of Economic and Social Affairs. World Urbanization Prospects: The 2018 Revision[M]. New York: United Nations, 2019. DOI: 10.18356/b9e995fe-en
    [61] CHEN M X, CHEN L K, CHENG J F, et al. Identifying interlinkages between urbanization and sustainable development goals[J]. Geography and Sustainability, 2022, 3(4): 339-346 doi: 10.1016/j.geosus.2022.10.001
    [62] SUN L Q, CHEN J, LI Q L, et al. Dramatic uneven urbanization of large cities throughout the world in recent decades[J]. Nature Communications, 2020, 11(1): 5366 doi: 10.1038/s41467-020-19158-1
    [63] MICHAEL F L, NOOR Z Z, FIGUEROA M J. Review of urban sustainability indicators assessment – Case study between Asiancountries[J]. Habitat International, 2014, 44: 491-500 doi: 10.1016/j.habitatint.2014.09.006
    [64] AMEEN R F M, MOURSHED M. Urban sustainability assessmentframework development: The ranking and weighting ofsustainability indicators using analytic hierarchy process[J]. Sustainable Cities and Society, 2019, 44: 356-366 doi: 10.1016/j.scs.2018.10.020
    [65] JEAN N, BURKE M, XIE M, et al. Combining satellite imageryand machine learning to predict poverty[J]. Science, 2016, 353(6301): 790-794 doi: 10.1126/science.aaf7894
    [66] NI Y, LI X T, YE Y M, et al. An investigation on deep learning approaches to combining nighttime and daytime satellite imagery for poverty prediction[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18(9): 1545-1549 doi: 10.1109/LGRS.2020.3006019
    [67] 刘娟, 郭海林, 施以兵. 基于QuickBird遥感影像的棚户区提取与制图[J]. 测绘与空间地理信息, 2011, 34(5): 199-202, 205

    LIU Juan, GUO Hailin, SHI Yibing. Extracting and mapping informal settlements from quickbird remote sensing imagery[J]. Geomatics & Spatial Information Technology, 2011, 34(5): 199-202, 205
    [68] KUANG W H, ZHANG S, LI X Y, et al. A 30 m resolution dataset of China’s urban impervious surface area and green space, 2000-2018[J]. Earth System Science Data, 2021, 13(1): 63-82 doi: 10.5194/essd-13-63-2021
    [69] WEI X B, ZHANG W, ZHANG Z, et al. Urban land use land cover classification based on GF-6 satellite imagery and multi-feature optimization[J]. Geocarto International, 2023, 38(1): 2236579 doi: 10.1080/10106049.2023.2236579
    [70] 孟庆伟. 城市公共交通覆盖度空间统计分析研究[J]. 测绘与空间地理信息, 2020, 43(3): 141-145 doi: 10.3969/j.issn.1672-5867.2020.03.040

    MENG Qingwei. Urban public transportation coverage analysis based on AHP[J]. Geomatics & Spatial Information Technology, 2020, 43(3): 141-145 doi: 10.3969/j.issn.1672-5867.2020.03.040
    [71] 赵亚军, 余静财. 基于ARCGIS的城市交通规划基础数据分析与应用[J]. 交通与运输, 2017(2): 56-60 doi: 10.3969/j.issn.1671-3400.2017.02.026

    ZHAO Yajun, YU Jingcai. Analysis and application of urban traffic planning basic data based on ARCGIS[J]. Traffic & Transportation, 2017(2): 56-60 doi: 10.3969/j.issn.1671-3400.2017.02.026
    [72] 伍亿真, 施开放, 余柏蒗, 等. 利用NPP-VIIRS夜间灯光遥感数据分析城市蔓延对雾霾污染的影响[J]. 武汉大学学报·信息科学版, 2021, 46(5): 777-789 doi: 10.13203/j.whugis20200455

    WU Yizhen, SHI Kaifang, SHE Boliang, et al. Analysis of the impact of urban sprawl on haze pollution based on the NPP-VIIRS nighttime light remote sensing data[J]. Geomatics and Information Science of Wuhan University, 2021, 46(5): 777-789 doi: 10.13203/j.whugis20200455
    [73] 乔治, 卢应爽, 贺曈, 等. 城市热岛斑块遥感识别及空间扩张路径研究——以北京市为例[J]. 地理科学, 2022, 42(8): 1492-1501

    QIAO Zhi, LU Yingshuang, HE Tong, et al. Identifying urban heat island patches and spatial expansion path based on remote sensing technology: A case of Beijing City[J]. Scientia Geographica Sinica, 2022, 42(8): 1492-1501
    [74] WMO. State of the Global Climate 2022[R/OL]. (2023-04-21) [2023-08-22]. https://library.wmo.int/doc_num.php?explnum_id=11593
    [75] WEF. The Global Risks Report 2023[R/OL]. (2023-01-11) [2023-08-22]. https://www3.weforum.org/docs/WEF_Global_Risks_Report_2023.pdf
    [76] United Nations Office for Disaster Risk Reduction. Global Assessment Report on Disaster Risk Reduction 2022[M]. Geneva: United Nations Office for Disaster Risk Reduction, 2022. DOI: 10.18356/9789210015059
    [77] NERINI F, SOVACOOL B, HUGHES N, et al. Connecting climateaction with other sustainabledevelopment goals[J]. Nature Sustainability, 2019, 2(8): 674-680 doi: 10.1038/s41893-019-0334-y
    [78] GUO H D, NATIVI S, LIANG D, et al. Big Earth Data science: Aninformation framework for a sustainable planet[J]. InternationalJournal of Digital Earth, 2020, 13(7): 743-767 doi: 10.1080/17538947.2020.1743785
    [79] YU B, CHEN F, YE C, et al. Temporal expansion of the nighttime light images of SDGSAT-1 satellite in illuminating ground object extraction by joint observation of NPP-VIIRS and sentinel-2A images[J]. Remote Sensing of Environment, 2023, 295: 113691 doi: 10.1016/j.rse.2023.113691
    [80] YU B, CHEN F, WANG N, et al. Assessing changes in nighttime lighting in the aftermath of the Turkey-Syria earthquake using SDGSAT-1 satellite data[J]. The Innovation, 2023, 4(3): 100419 doi: 10.1016/j.xinn.2023.100419
    [81] CHEN F, WANGJ X, LI B, et al. Spatial variability in melting on Himalayan debris-covered glaciers from 2000 to 2013[J]. Remote Sensing of Environment, 2023, 291: 113560 doi: 10.1016/j.rse.2023.113560
    [82] 葛咏, 李强子, 凌峰, 等. “一带一路”关键节点区域极端气候风险评价及应对策略[J]. 中国科学院院刊, 2021, 36(2): 170-178

    GE Yong, LI Qiangzi, LING Feng, et al. Risk assessment and response strategies for extreme climate events in key nodes of the Belt and Road[J]. Bulletin of Chinese Academy of Sciences, 2021, 36(2): 170-178
    [83] 王卷乐, 魏海硕, 严欣荣, 等. “一带一路”经济走廊资源环境信息开发利用研究进展与展望[J]. 地球信息科学学报, 2022, 24(6): 1019-1033

    WANG Juanle, WEI Haishuo, YAN Xinrong, et al. Review and perspective for resources and environmental information development andservice along the economic corridors of the Belt and Road initiative[J]. Journal of Geo-information Science, 2022, 24(6): 1019-1033
    [84] 秦冰雪, 曾静静. 全球温室气体遥感卫星发展现状[J]. 中国环境科学, 2023, 43(9): 4961-4974

    QIN Bingxue, ZENG Jingjing. Development status of global greenhouse gas remote sensing satellite industry[J]. China Environmental Science, 2023, 43(9): 4961-4974
    [85] WANG J, FENG L, PALMER P I, et al. Large Chinese land carbonsink estimated from atmospheric carbon dioxide data[J]. Nature, 2020, 586(7831): 720-723
    [86] 刘良云, 陈良富, 刘毅, 等. 全球碳盘点卫星遥感监测方法、进展与挑战[J]. 遥感学报, 2022, 26(2): 243-267

    LIU Liangyun, CHEN Liangfu, LIU Yi, et al. Satellite remote sensing forglobal stocktaking: methods, progress and perspectives[J]. National Remote Sensing Bulletin, 2022, 26(2): 243-267
    [87] 王建事, 王成新, 任婉侠, 等. 地理学视角下“双碳”研究: 主题、成效及展望[J]. 地球科学进展, 2023, 38(7): 757-768

    WANG Jianshi, WANG Chengxin, REN Wanxia, et al. “Carbon peaking and carbon neutrality” studies in geosciences: theme, effects, and prospects[J]. Advances in Earth Science, 2023, 38(7): 757-768
    [88] UN Environment. Global Environment Outlook – GEO-6: Healthy Planet, Healthy People[M]. Cambridge: CambridgeUniversity Press, 2019
    [89] United Nations. The Second World ocean assessment[OL]. (2021-04-21)[2023-08-20]. https://www.un.org/regularprocess/
    [90] 贾明明, 王宗明, 毛德华, 等. 面向可持续发展目标的中国红树林近50年变化分析[J]. 科学通报, 2021, 66(30): 3886-3901

    JIA Mingming, WANG Zongming, MAO Dehua, et al. Spatial-temporal changes of China’s mangrove forests over the past 50 years: An analysis towards the SustainableDevelopment Goals (SDGs)[J]. Chinese Science Bulletin, 2021, 66(30): 3886-3901
    [91] 郭华东. 新一代全球红树林遥感制图产品[J]. 科学通报, 2023, 68(20): 2575-2576

    GUO Huadong. An innovative remote sensing product of global mangrove forests[J]. Chinese Science Bulletin, 2023, 68(20): 2575-2576
    [92] 于仁成, 吕颂辉, 齐雨藻, 等. 中国近海有害藻华研究现状与展望[J]. 海洋与湖沼, 2020, 51(4): 768-788

    YU Rencheng, LV Songhui, QI Yuzao, et al. Progress and perspectives of harmfulalgal bloom studies in China[J]. Oceanologia et Limnologia Sinica, 2020, 51(4): 768-788
    [93] 潘琦, 刘丽东, 马静武, 等. 卫星遥感监测人类活动所致海洋环境污染研究进展[J]. 海洋通报, 2022, 41(6): 722-736

    PAN Qi, LIU Lidong, MA Jingwu, et al. Progress in remote sensing satellite monitoring of marine environmental pollution by human activities[J]. Marine Science Bulletin, 2022, 41(6): 722-736
    [94] FAO. Global Forest Resources Assessment 2020KeyFindings[R]. Rome: FAO, 2020. DOI:10.4060/ca8753en.
    [95] IPBES. Global Assessment Report on Biodiversity andEcosystem Services[R/OL]. (2019-05-21)[2023-08-20]. https://ipbes.net/globalassessment
    [96] UNEP. Measuring Progress: Environment and the SDGs[R/OL]. (2021-05-22) [2023-08-20]. https://www.unep.org/resources/publication/measuring-progress-environment-and-sdgs
    [97] 王伟, 杨净, 高显连, 等. 2020年全球森林资源评估遥感调查方法和思考[J]. 林业资源管理, 2021(6): 1-5

    WANG Wei, YANG Jing, GAO Xianlian, et al. Method and enlightenment of 2020 global forest resources assessment remote sensing survey[J]. Forest Resources Management, 2021(6): 1-5
    [98] 赵强, 俞乐, 徐伊迪, 等. 空间观测技术在油棕研究中的应用[J]. 遥感技术与应用, 2022, 37(5): 1029-1042

    ZHAO Qiang, YU Le, XU Yidi, et al. Application of space observation technology in oil palm research[J]. Remote Sensing Technology and Application, 2022, 37(5): 1029-1042
    [99] 张鹏超, 梁宇, 刘波, 等. 基于随机森林模型的青藏高原森林地上生物量遥感估算[J]. 生态学杂志, 2023, 42(2): 415-424

    ZHANG Pengchao, LIANG Yu, LIU Bo, et al. Remote sensing estimation of forest aboveground biomass in Tibetan Plateau based on random forest model[J]. Chinese Journal of Ecology, 2023, 42(2): 415-424
    [100] LUO S Z, WANG C, XI X H, et al. Combining hyperspectral imagery and LiDAR pseudo-waveform for predicting crop LAI, canopy height andabove-ground biomass[J]. Ecological Indicators, 2019, 102: 801-812
    [101] United Nations Conventionto Combat Desertification (UNCCD). 2030 Agenda for Sustainable Development: implications for the United Nations Convention to CombatDesertification-The future strategic framework of the Convention[OL]. (2017-09-16)[2023-08-20]. https://www.unccd.int/sites/default/files/inline-files/ICCD_COP%2813%29_L.18-1716078E_0.pdf
    [102] 王海, 王连喜, 杨祖祥, 等. 荒漠化遥感监测与评估的应用研究动态[J]. 灾害学, 2017, 32(4): 153-161

    WANG Hai, WANG Lianxi, YANG Zuxiang, et al. The application of remote sensing monitoring and evaluation of desertification research dynamic[J]. Journal of Catastrophology, 2017, 32(4): 153-161
    [103] 邵京, 李晓松, 杨珺婷, 等. 光学与雷达遥感协同的大尺度草地灌丛化监测研究[J]. 干旱区资源与环境, 2021, 35(2): 130-135

    SHAO Jing, LI Xiaosong, YANG Junting, et al. Study on large scale grassland shrub monitoring based on optical and radar remote sensing[J]. Journal of Arid Land Resources and Environment, 2021, 35(2): 130-135
    [104] ZHANG X M, LONG T F, HE G J, et al. Rapid generation of global forest cover map using Landsat based on the forest ecological zones[J]. Journal of Applied Remote Sensing, 2020, 14(2): 022211
  • 加载中
图(2)
计量
  • 文章访问数:  969
  • HTML全文浏览量:  374
  • PDF下载量:  88
  • 被引次数: 

    0(来源:Crossref)

    0(来源:其他)

出版历程
  • 收稿日期:  2023-09-28
  • 修回日期:  2023-11-07
  • 网络出版日期:  2023-12-19

目录

    /

    返回文章
    返回