基于跨阻抗前置放大器的宽频带感应式磁传感器的设计与验证
doi: 10.11728/cjss2024.01.2022-0073 cstr: 32142.14.cjss2024.01.2022-0073
Design and Verification of Wide-band Search Coil Magnetometer Based on Transimpedance Preamplifier
-
摘要: 本文建立了一种基于跨阻抗前置放大器的磁传感器信号传递模型, 并在该模型的基础上推导出磁传感器的灵敏度和噪声理论值. 根据理论推导的结果, 进一步研究了感应式磁传感器设计方法, 以带宽0.01~10 kHz, 噪声1 fT·Hz–1/2 (1~10 kHz)作为设计目标设计了一个感应式磁传感器, 并对这一传感器进行了性能验证试验. 在处理频率响应测试数据时设计了一种基于信号调制的处理方法, 有效提取特定频率得到幅值和相位, 并降低了随机噪声的干扰, 磁传感器–3 dB带宽达到了0.01~10 kHz. 在评估传感器噪声时, 采用双探头差分的方法消除了环境的干扰, 设计了相位差分析的评估方法, 确认在哪些频带双探头探测的信号是同源的, 在这些频带采用差分法评估是有效的. 评估的结果是, 传感器在1~10 kHz 实现了1 fT·Hz–1/2噪声水平.Abstract: The search coil magnetometer is widely used in space exploration and geological prospecting due to its high sensitivity and low noise level. This study presents a search coil sensor based on a transimpedance preamplifier to achieve a wide frequency bandwidth. The sensor directly connects the output signal of the inductive coil to the transimpedance preamplifier, which converts the AC magnetic field signal into an electrical signal. A signal transfer model of a magnetic sensor based on a transimpedance preamplifier is established, and the theoretical formula for sensitivity and noise is deduced. The search coil sensor is designed and developed using this formula to achieve a bandwidth of 0.01~10 kHz and a noise level of 1 fT·Hz–1/2 at 1~10 kHz. A signal modulation method evaluates the sensor’s performance for efficient amplitude and phase extraction at a specific frequency. The dual sensor differential method eliminates environmental interference during sensor noise assessment, and a phase difference analysis evaluates the homologous frequency bands of signals detected by two probes. As a result, the sensor achieves a 1 fT·Hz–1/2 noise level in the 1 kHz to 10 kHz range.
-
Key words:
- Inductive magnetic sensor /
- Search coil /
- Transimpedance amplifier /
- Transfer function /
- Noise /
- Data processing
-
表 1 宽频磁传感器参数表
Table 1. Broadband magnetic sensor parameter table
线圈参数 取值 磁芯相对磁导率 8.2×104 磁芯长度/mm 1000 绕线骨架长度/mm 700 绕线匝数 4200 放大器电压噪声/(nV·Hz–1/2) 4 放大器电流噪声/( fA·Hz–1/2) 10 反馈电阻/ kΩ 470 反馈电容/ pF 10 -
[1] TUMANSKI S. Induction coil sensors – a review[J]. Measurement Science and Technology, 2007, 18(3): R31 doi: 10.1088/0957-0233/18/3/R01 [2] ROBERT P, CORNILLEAU-WEHRLIN N, PIBERNE R, et al. CLUSTER–STAFF search coil magnetometer calibration – comparisons with FGM[J]. Geoscientific Instrumentation, Methods and Data Systems, 2014, 3(2): 153-177 doi: 10.5194/gi-3-153-2014 [3] ROUX A, LE CONTEL O, COILLOT C, et al. The search coil magnetometer for THEMIS[J]. Space Science Reviews, 2008, 141(1/2/3/4): 265-275 [4] PARROT M, BENOIST D, BERTHELIER J J, et al. The magnetic field experiment IMSC and its data processing onboard DEMETER: scientific objectives, description and first results[J]. Planetary and Space Science, 2006, 54(5): 441-455 doi: 10.1016/j.pss.2005.10.015 [5] CAO J B, ZENG L, ZHAN F, et al. The electromagnetic wave experiment for CSES mission: search coil magnetometer[J]. Science China Technological Sciences, 2018, 61(5): 653-658 doi: 10.1007/s11431-018-9241-7 [6] WYGANT J R, BONNELL J W, GOETZ K, et al. The electric field and waves instruments on the radiation belt storm probes mission[J]. Space Science Reviews, 2013, 179(1/2/3/4): 183-220 [7] BALE S D, GOETZ K, HARVEY P R, et al. The FIELDS instrument suite for solar probe plus: measuring the coronal plasma and magnetic field, plasma waves and turbulence, and radio signatures of solar transients[J]. Space Science Reviews, 2016, 204(1/2/3/4): 49-82 [8] 巨汉基, 朱万华, 方广有. 磁芯感应线圈传感器综述[J]. 地球物理学进展, 2010, 25(5): 1870-1876JU Hanji, ZHU Wanhua, FANG Guangyou. A review on ferromagnetic induction coil sensors[J]. Progress in Geophysics, 2010, 25(5): 1870-1876 [9] 刘凯, 米晓利, 朱万华, 等. 一种用于TEM高灵敏度感应式磁场传感器设计[J]. 地球物理学报, 2014, 57(10): 3485-3492 doi: 10.6038/cjg20141034LIU Kai, MI Xiaoli, ZHU Wanhua, et al. A design of high sensitivity induction magnetometer for TEM[J]. Chinese Journal of Geophysics, 2014, 57(10): 3485-3492 doi: 10.6038/cjg20141034 [10] 朱万华, 底青云, 刘雷松, 等. 基于磁通负反馈结构的高灵敏度感应式磁场传感器研制[J]. 地球物理学报, 2013, 56(11): 3683-3689 doi: 10.6038/cjg20131109ZHU Wanhua, DI Qingyun, LIU Leisong, et al. Development of search coil magnetometer based on magnetic flux negative feedback structure[J]. Chinese Journal of Geophysics, 2013, 56(11): 3683-3689 doi: 10.6038/cjg20131109 [11] 王勇, 佴磊, 牛建军, 等. 高灵敏度感应式磁传感器测试研究[J]. 地球物理学报, 2019, 62(10): 3760-3771 doi: 10.6038/cjg2019M0413WANG Yong, NAI Lei, NIU Jianjun, et al. Experimental study on high-sensitivity induction magnetometer[J]. Chinese Journal of Geophysics, 2019, 62(10): 3760-3771 doi: 10.6038/cjg2019M0413 [12] COILLOT C, LEROY P. Induction magnetometers principle, modeling and ways of improvement[M]//KUANG K. Magnetic Sensors - Principles and Applications. Rijeka: InTech, 2012 [13] OZAKI M, YAGITANI S, KOJIMA H, et al. Current-sensitive CMOS preamplifier for investigating space plasma waves by magnetic search coils[J]. IEEE Sensors Journal, 2014, 14(2): 421-429 doi: 10.1109/JSEN.2013.2284011 -
-