留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于递推最小二乘法的运动平台剩磁差分测量与估计方法

朱明慧 谷鹏 高东

朱明慧, 谷鹏, 高东. 一种基于递推最小二乘法的运动平台剩磁差分测量与估计方法[J]. 空间科学学报, 2024, 44(3): 570-584. doi: 10.11728/cjss2024.03.2023-0002
引用本文: 朱明慧, 谷鹏, 高东. 一种基于递推最小二乘法的运动平台剩磁差分测量与估计方法[J]. 空间科学学报, 2024, 44(3): 570-584. doi: 10.11728/cjss2024.03.2023-0002
ZHU Minghui, GU Peng, GAO Dong. Remanence Model Estimation Method of Geomagnetic Navigation Carrier Based on Recursive Least Square Method (in Chinese). Chinese Journal of Space Science, 2024, 44(3): 570-584 doi: 10.11728/cjss2024.03.2023-0002
Citation: ZHU Minghui, GU Peng, GAO Dong. Remanence Model Estimation Method of Geomagnetic Navigation Carrier Based on Recursive Least Square Method (in Chinese). Chinese Journal of Space Science, 2024, 44(3): 570-584 doi: 10.11728/cjss2024.03.2023-0002

一种基于递推最小二乘法的运动平台剩磁差分测量与估计方法

doi: 10.11728/cjss2024.03.2023-0002 cstr: 32142.14.cjss2024.03.2023-0002
基金项目: 国防基础科研计划项目资助(JCKY2019130 D020)
详细信息
    作者简介:
    • 朱明慧 女, 1997年7月出生于河北省保定市. 现为中国科学院国家空间科学中心博士生, 主要研究方向为运动载体平台磁干扰估计技术研究等. E-mail: zhuminghui20@mails.ucas.ac.cn
    通讯作者:
    • 高东 男, 1978年12月出生于河北省武邑县. 现为中国科学院国家空间科学中心副研究员, 中国科学院大学岗位教授, 硕士生导师, 主要研究飞行器自主导航与控制. E-mail: gaodong@nssc.ac.cn
  • 中图分类号: V249.3

Remanence Model Estimation Method of Geomagnetic Navigation Carrier Based on Recursive Least Square Method

  • 摘要: 地磁导航是通过对地球周围矢量磁场进行测量从而实现导航的一种方法. 地磁导航在运动平台上应用的难点之一是平台剩磁对地磁测量的影响, 严重污染了磁强计的测量. 消除平台剩磁对地磁测量的影响成为地磁导航向应用转化的一项关键技术. 为实现运动平台剩磁的有效测量与估计, 提出了基于递推最小二乘法的运动平台剩磁差分测量与估计方法. 基于载体干扰磁场值只与测量点到磁偶极子的距离和磁偶极子的磁矩有关的结论, 根据磁偶极子的磁场分布特性, 推导出一种基于内置磁强计阵列的运动平台剩磁差分估计模型, 并通过递推最小二乘法求解差分估计模型. 大量仿真实验表明, 可以通过内置阵列磁强计对平台剩磁进行测量与估计, 验证了所提出的平台剩磁估计方法的有效性.

     

  • 图  1  地磁导航原理

    Figure  1.  Principles of geomagnetic navigation

    图  2  差分原理

    Figure  2.  Difference schematic diagram

    图  3  干扰磁场测量值

    Figure  3.  Interfering magnetic field measurements

    图  4  磁偶极子分布

    Figure  4.  Diagram of magnetic dipole distribution

    图  9  m=9, n=6时每个磁偶极子的磁矩误差曲线

    Figure  9.  Magnetic moment error curve of each magnetic dipole at m=9 and n=6

    图  5  m=5, n=6时每个磁偶极子的磁矩误差曲线

    Figure  5.  Magnetic moment error curve of each magnetic dipole at m=5 and n=6

    图  6  m=6, n=6时每个磁偶极子的磁矩误差曲线

    Figure  6.  Magnetic moment error curve of each magnetic dipole at m=6 and n=6

    图  7  m=7, n=6时每个磁偶极子的磁矩误差曲线

    Figure  7.  Magnetic moment error curve of each magnetic dipole at m=7 and n=6

    图  8  m=8, n=6时每个磁偶极子的磁矩误差曲线

    Figure  8.  Magnetic moment error curve of each magnetic dipole at m=8 and n=6

    图  10  m=10, n=6时每个磁偶极子的磁矩误差曲线

    Figure  10.  Magnetic moment error curve of each magnetic dipole at m=10 and n=6

    图  11  均匀分布下m=10, n=6时每个磁偶极子的磁矩误差曲线

    Figure  11.  Magnetic moment error curve of each magnetic dipole with a uniform distribution of m=10 and n=6

    表  1  m=5, n=6时磁偶极子误差百分比

    Table  1.   Error percentage of magnetic dipole when m=5 and n=6

    磁偶极子序号误差百分比值/(%)
    10.76183
    20.00672
    30.00343
    40.00404
    50.00538
    下载: 导出CSV

    表  2  m=6, n=6时磁偶极子误差百分比

    Table  2.   Error percentage of magnetic dipole when m=6 and n=6

    磁偶极子序号误差百分比值/(%)
    16.03741
    20.03409
    30.00509
    40.00363
    54.33320
    68.05160
    下载: 导出CSV

    表  3  m=7, n=6时磁偶极子误差百分比

    Table  3.   Error percentage of magnetic dipole when m=7 and n=6

    磁偶极子序号误差百分比值 /(%)
    17.45261
    20.05124
    30.00446
    40.00398
    56.20780
    65.06344
    74.72406
    下载: 导出CSV

    表  4  m=8, n=6时磁偶极子误差百分比

    Table  4.   Error percentage of magnetic dipole when m=8 and n=6

    磁偶极子序号误差百分比值/ (%)
    19.43795
    20.37934
    30.05351
    40.01930
    57.37411
    69.03933
    79.40990
    89.51667
    下载: 导出CSV

    表  5  m=9, n=6时磁偶极子误差百分比

    Table  5.   Error percentage of magnetic dipole when m=9 and n=6

    磁偶极子序号误差百分比值/(%)
    18.57700
    20.32214
    30.04867
    40.01976
    55.92758
    69.05313
    78.74328
    87.89434
    99.40489
    下载: 导出CSV

    表  6  m=10, n=6时磁偶极子误差百分比

    Table  6.   Error percentage of magnetic dipole when m=10 and n=6

    磁偶极子序号误差百分比值/(%)
    18.60312
    20.30705
    30.12553
    40.12544
    56.20852
    69.14841
    78.75330
    89.51979
    99.92289
    108.76301
    下载: 导出CSV

    表  7  均匀分布下m=10, n=6时磁偶极子的误差百分比

    Table  7.   Magnetic dipole error percentage when m=10 and n=6 under uniform distribution

    磁偶极子序号误差百分比值/(%)
    18.77522
    20.28271
    30.13561
    40.39641
    75.38940
    135.88672
    201.73264
    227.67923
    268.03289
    299.18390
    下载: 导出CSV
  • [1] LIU Y X, ZHANG P, WANG X. Information fusing algorithm in inertial/geomagnetic navigation system[C]//Proceedings of 2020 International Conference on Guidance, Navigation and Control, ICGNC 2020. Tianjin: Springer, 2022: 1219-1227
    [2] MA X J, LIU H W, XIAO D, et al. Key technologies of geomagnetic aided inertial navigation system[C]//2009 IEEE Intelligent Vehicles Symposium. Xi'an: IEEE, 2009: 464-469
    [3] 周能兵, 王亚斌, 王强. 地磁导航技术研究进展综述[J]. 导航定位学报, 2018, 6(2): 15-19

    ZHOU Nengbing, WANG Yabin, WANG Qiang. A brief review of geomagnetic navigation technology[J]. Journal of Navigation and Positioning, 2018, 6(2): 15-19
    [4] 周军, 葛致磊, 施桂国, 等. 地磁导航发展与关键技术[J]. 宇航学报, 2008, 29(5): 1467-1472 doi: 10.3873/j.issn.1000-1328.2008.05.001

    ZHOU Jun, GE Zhilei, SHI Guiguo, et al. Key technique and development for geomagnetic navigation[J]. Journal of Astronautics, 2008, 29(5): 1467-1472 doi: 10.3873/j.issn.1000-1328.2008.05.001
    [5] CUI F, GAO D, ZHENG J H. Magnetometer-based orbit determination via fast reconstruction of three-dimensional decoupled geomagnetic field model[J]. Journal of Spacecraft and Rockets, 2021, 58(5): 1374-1386 doi: 10.2514/1.A34939
    [6] CHEN B, YUAN J H, NI Z, et al. Chinese geomagnetic reference field 2020 by the revised surface spline method[J]. Applied Sciences, 2022, 12(5): 2297 doi: 10.3390/app12052297
    [7] XU N H, WANG L H, WU T, et al. An innovative PSO-ICCP matching algorithm for geomagnetic navigation[J]. Measurement, 2022, 193: 110958 doi: 10.1016/j.measurement.2022.110958
    [8] CUI F, GAO D, ZHENG J H. Magnetometer-based autonomous orbit determination via a measurement differencing extended Kalman filter during geomagnetic storms[J]. Aircraft Engineering and Aerospace Technology, 2018, 92(3): 428-439
    [9] 崔峰. 基于量测差分与模型重构和补偿的地磁导航方法研究[D]. 中国科学院大学(中国科学院国家空间科学中心), 2021

    CUI Feng. Research for geomagnetic navigation method based on magnetometer difference measurements and model reconstruction & compensation[D]. University of Chinese Academy of Sciences (National Space Science Center, the Chinese Academy of Sciences), 2021
    [10] 高东, 张涛, 崔峰, 等. 近地卫星地磁导航发展与高精度地磁导航研究[C]//第二届中国空天安全会议论文集. 大连: 中国指挥与控制学会空天安全平行系统专业委员会, 2017: 438-445

    GAO Dong, ZHANG Tao, CUI Feng, et al. Research on the development of near-Earth satellite geomagnetic navigation and high-precision geomagnetic navigation[C]//The 2nd China Air and Space Security Conference. Dalian, 2017: 438-445
    [11] 于向前, 刘斯, 肖池阶, 等. 基于椭球拟合的三轴磁强计两步校准法[J]. 仪表技术与传感器, 2021(2): 52-56

    YU Xiangqian, LIU Si, XIAO Chijie, et al. Two-step calibration of tri-axial magnetometer based on ellipsoid fitting[J]. Instrument Technique and Sensor, 2021(2): 52-56
    [12] 肖琦, 刘胜利, 孟立飞, 等. 电磁监测卫星磁洁净控制方法研究[J]. 装备环境工程, 2018, 15(6): 78-81

    XIAO Qi, LIU Shengli, MENG Lifei, et al. Magnetic cleanliness control methods of seismo-electromagnetic satellite[J]. Equipment Environmental Engineering, 2018, 15(6): 78-81
    [13] 寇义民, 夏红伟, 刘睿, 等. 一种地磁导航中的低频电磁干扰场分离方法[J]. 哈尔滨工业大学学报, 2011, 43(7): 32-37 doi: 10.11918/j.issn.0367-6234.2011.07.007

    KOU Yimin, XIA Hongwei, LIU Rui, et al. Method for separation of low-frequency electromagnetic interference in geomagnetic navigation systems[J]. Journal of Harbin Institute of Technology, 2011, 43(7): 32-37 doi: 10.11918/j.issn.0367-6234.2011.07.007
    [14] 董晓芬, 陈国光, 田晓丽, 等. 基于CEEMDAN阈值滤波的磁场信号去噪模型[J]. 传感技术学报, 2021, 34(7): 919-925 doi: 10.3969/j.issn.1004-1699.2021.07.011

    DONG Xiaofen, CHEN Guoguang, TIAN Xiaoli, et al. Denoising model of magnetic field signal based on CEEMDAN threshold filtering[J]. Chinese Journal of Sensors and Actuators, 2021, 34(7): 919-925 doi: 10.3969/j.issn.1004-1699.2021.07.011
    [15] 赵塔, 朱小宁, 程德福, 等. 水下地磁导航技术中的地磁场空间差分测量方法[J]. 吉林大学学报:工学版, 2017, 47(1): 316-322

    ZHAO Ta, ZHU Xiaoning, CHENG Defu, et al. Geomagnetic field spatial difference measuring method for underwater geomagnetic navigation technology[J]. Journal of Jilin University: Engineering and Technology Edition, 2017, 47(1): 316-322
    [16] 赵塔, 陈雨薇, 周志坚, 等. 一种水下载体干扰磁场的空间差分补偿方法[J]. 电机与控制学报, 2016, 20(3): 71-76

    ZHAO Ta, CHEN Yuwei, ZHOU Zhijian, et al. Spatial difference compensation method of underwater vehicle interference magnetic field[J]. Electric Machines and Control, 2016, 20(3): 71-76
    [17] 徐涛, 温东, 孙晓磊. 基于加速度计和磁强计的方位测量与校正技术研究[J]. 仪器仪表学报, 2009, 30(10): 2018-2022

    XU Tao, WEN Dong, SUN Xiaolei. Research on azimuth measurement and correction technique with accelerometer and magnetometer[J]. Chinese Journal of Scientific Instrument, 2009, 30(10): 2018-2022
    [18] ZHOU Y K, HUANG G, ZHANG X Y. Geomagnetic sensor noise reduction for improving calibration compensation accuracy based on improved HHT algorithm[J]. IEEE Sensors Journal, 2019, 19(24): 12096-12104 doi: 10.1109/JSEN.2019.2940298
    [19] CONSTANTINESCU O D, AUSTER H U, DELVA M, et al. Maximum-variance gradiometer technique for removal of spacecraft-generated disturbances from magnetic field data[J]. Geoscientific Instrumentation, Methods and Data Systems, 2020, 9(2): 451-469 doi: 10.5194/gi-9-451-2020
    [20] XU X, HUANG L, LIU X J, et al. DeepMAD: deep learning for magnetic anomaly detection and denoising[J]. IEEE Access, 2020, 8: 121257-121266 doi: 10.1109/ACCESS.2020.3006795
    [21] 杨云涛, 石志勇, 关贞珍, 等. 一种基于磁偶极子磁场分布理论的磁场干扰补偿方法[J]. 兵工学报, 2008, 29(12): 1485-1491

    YANG Yuntao, SHI Zhiyong, GUAN Zhenzhen, et al. A magnetic disturbance compensation method based on magnetic dipole magnetic field distributing theory[J]. Acta Armamentarii, 2008, 29(12): 1485-1491
    [22] 金煌煌, 庄志洪, 付梦印, 等. 最简多磁偶极子等效建模方法[J]. 系统工程与电子技术, 2021, 43(8): 2066-2075

    JIN Huanghuang, ZHUANG Zhihong, FU Mengyin, et al. Modeling method using simplest multiple magnetic dipoles equivalence[J]. Systems Engineering and Electronics, 2021, 43(8): 2066-2075
    [23] 李季. 地磁测量中载体干扰磁场特性及补偿方法研究[D]. 长沙: 国防科学技术大学, 2013

    LI Ji. Study on the characteristics and compensation method of vehicle interferential magnetic field in geomagnetic measurement[D]. Changsha: National University of Defense Technology, 2013
    [24] 孙浩, 赵伟. 磁传感器阵列技术及其应用[J]. 电测与仪表, 2020, 57(9): 1-7

    SUN Hao, ZHAO Wei. Technical characteristics and applications of magnetic sensor array[J]. Electrical Measurement & Instrumentation, 2020, 57(9): 1-7
    [25] 陈路昭, 冯永强, 郭瑞杰, 等. 地磁背景下基于传感器阵列的磁偶极子目标跟踪方法[J]. 电子与信息学报, 2020, 42(3): 573-581

    CHEN Luzhao, FENG Yongqiang, GUO Ruijie, et al. Magnetic dipole object tracking algorithm based on magnetometer array in geomagnetic background[J]. Journal of Electronics & Information Technology, 2020, 42(3): 573-581
  • 加载中
图(11) / 表(7)
计量
  • 文章访问数:  343
  • HTML全文浏览量:  126
  • PDF下载量:  67
  • 被引次数: 

    0(来源:Crossref)

    0(来源:其他)

出版历程
  • 收稿日期:  2023-01-03
  • 录用日期:  2024-01-29
  • 修回日期:  2023-03-13
  • 网络出版日期:  2023-12-21

目录

    /

    返回文章
    返回