| [1] |
NI B B, XIANG Z, GU X D, et al. Dynamic responses of the Earth's radiation belts during periods of solar wind dynamic pressure pulse based on normalized superposed epoch analysis[J]. Journal of Geophysical Research: Space Physics, 2016, 121(9): 8523-8536 doi: 10.1002/2016JA023067
|
| [2] |
NI B B, ZHANG Y, GU X D. Identification of ring current proton precipitation driven by scattering of electromagnetic ion cyclotron waves[J]. Fundamental Research, 2023, 3(2): 257-264 doi: 10.1016/j.fmre.2021.12.018
|
| [3] |
WANG J H, GUO D Y, XIANG Z, et al. Prediction of geosynchronous electron fluxes using an artificial neural network driven by solar wind parameters[J]. Advances in Space Research, 2023, 71(1): 275-285 doi: 10.1016/j.asr.2022.10.013
|
| [4] |
CHU X N, MA D L, BORTNIK J, et al. Relativistic electron model in the outer radiation belt using a neural network approach[J]. Space Weather, 2021, 19(12): e2021SW002808 doi: 10.1029/2021SW002808
|
| [5] |
PILIPENKO V, YAGOVA N, ROMANOVA N, et al. Statistical relationships between satellite anomalies at geostationary orbit and high-energy particles[J]. Advances in Space Research, 2006, 37(6): 1192-1205 doi: 10.1016/j.asr.2005.03.152
|
| [6] |
GUO D Y, XIANG Z, NI B B, et al. Three-dimensional simulations of ultra-relativistic electron acceleration during the 21 April 2017 storm[J]. Journal of Geophysical Research: Space Physics, 2023, 128(4): e2023JA031407 doi: 10.1029/2023JA031407
|
| [7] |
CAO J B, DUAN A Y, REME H, et al. Relations of the energetic proton fluxes in the central plasma sheet with solar wind and geomagnetic activities[J]. Journal of Geophysical Research: Space Physics, 2013, 118(11): 7226-7236 doi: 10.1002/2013JA019289
|
| [8] |
ZHAO H, JOHNSTON W R, BAKER D N, et al. Characterization and evolution of radiation belt electron energy spectra based on the van allen probes measurements[J]. Journal of Geophysical Research: Space Physics, 2019, 124(6): 4217-4232 doi: 10.1029/2019JA026697
|
| [9] |
WHITTAKER C I, GAMBLE R J, RODGER C J, et al. Determining the spectra of radiation belt electron losses: fitting DEMETER electron flux observations for typical and storm times[J]. Journal of Geophysical Research: Space Physics, 2013, 118(12): 7611-7623 doi: 10.1002/2013JA019228
|
| [10] |
PIZZELLA G, LAUGHLIN C D, O'BRIEN B J. Note on the electron energy spectrum in the inner Van Allen Belt[J]. Journal of Geophysical Research, 1962, 67(9): 3281-3287 doi: 10.1029/JZ067i009p03281
|
| [11] |
IMHOF W L, SMITH R V. Energy spectrum of electrons at low altitudes[J]. Journal of Geophysical Research, 1965, 70(9): 2129-2134 doi: 10.1029/JZ070i009p02129
|
| [12] |
GALPER A M, KOLDASHOV S V, MIKHAILOV V V, et al. Energy spectrum and charge composition of a new, long-lived, unstable electron radiation belt[J]. Journal of Geophysical Research: Space Physics, 1999, 104(A12): 28685-28689 doi: 10.1029/1999JA900201
|
| [13] |
FENNELL J F, CLAUDEPIERRE S G, BLAKE J B, et al. Van Allen Probes show that the inner radiation zone contains no MeV electrons: ECT/MagEIS data[J]. Geophysical Research Letters, 2015, 42(5): 1283-1289 doi: 10.1002/2014GL062874
|
| [14] |
LI X, SELESNICK R S, BAKER D N, et al. Upper limit on the inner radiation belt MeV electron intensity[J]. Journal of Geophysical Research: Space Physics, 2015, 120(2): 1215-1228 doi: 10.1002/2014JA020777
|
| [15] |
JAYNES A N, BAKER D N, SINGER H J, et al. Source and seed populations for relativistic electrons: their roles in radiation belt changes[J]. Journal of Geophysical Research: Space Physics, 2015, 120(9): 7240-7254 doi: 10.1002/2015JA021234
|
| [16] |
ZHAO H, NI B, LI X, et al. Plasmaspheric hiss waves generate a reversed energy spectrum of radiation belt electrons[J]. Nature Physics, 2019, 15(4): 367-372 doi: 10.1038/s41567-018-0391-6
|
| [17] |
NI B B, HUANG H, ZHANG W X, et al. Parametric sensitivity of the formation of reversed electron energy spectrum caused by plasmaspheric hiss[J]. Geophysical Research Letters, 2019, 46(8): 4134-4143 doi: 10.1029/2019GL082032
|
| [18] |
黄河. 辐射带电子反转能谱的生成、演化和消失: 观测与模拟[D]. 武汉: 武汉大学, 2019HUANG He. The Formation, Evolution and Disappearance of Reversed Energy Spectra of Radiation Belt Electrons: Observations and Simulations[D]. Wuhan: Wuhan University, 2019
|
| [19] |
BLAKE J B, CARRANZA P A, CLAUDEPIERRE S G, et al. The magnetic electron ion spectrometer (MagEIS) instruments aboard the radiation belt storm probes (RBSP) spacecraft[J]. Space Science Reviews, 2013, 179(1): 383-421
|
| [20] |
BAKER D N, KANEKAL S G, HOXIE V, et al. The relativistic electron-proton telescope (REPT) investigation: design, operational properties, and science highlights[J]. Space Science Reviews, 2021, 217(5): 68 doi: 10.1007/s11214-021-00838-3
|
| [21] |
HUA M, BORTNIK J, KELLERMAN A C, et al. Ensemble modeling of radiation belt electron acceleration by chorus waves: dependence on key input parameters[J]. Space Weather, 2023, 21(3): e2022SW003234 doi: 10.1029/2022SW003234
|
| [22] |
SHPRITS Y Y, ALLISON H J, WANG D D, et al. A new population of ultra-relativistic electrons in the outer radiation zone[J]. Journal of Geophysical Research: Space Physics, 2022, 127(5): e2021JA030214 doi: 10.1029/2021JA030214
|
| [23] |
SU Z P, XIAO F L, ZHENG H N, et al. STEERB: a three-dimensional code for storm-time evolution of electron radiation belt[J]. Journal of Geophysical Research: Space Physics, 2010, 115(A9): A09208
|
| [24] |
XIAO F L, SU Z P, ZHENG H N, et al. Modeling of outer radiation belt electrons by multidimensional diffusion process[J]. Journal of Geophysical Research: Space Physics, 2009, 114(A3): A03201
|
| [25] |
刘阳希子, 项正, 郭建广, 等. 甚低频台站信号对地球内辐射带和槽区能量电子的散射效应分析[J]. 物理学报, 2021, 70(14): 149401 doi: 10.7498/aps.70.20202029LIU Yangxizi, XIANG Zheng, GUO Jianguang, et al. Scattering effect of very low frequency transmitter signals on energetic electrons in Earth’s inner belt and slot region[J]. Acta Physica Sinica, 2021, 70(14): 149401 doi: 10.7498/aps.70.20202029
|
| [26] |
GUO D Y, XIANG Z, NI B B, et al. Bounce resonance scattering of radiation belt energetic electrons by extremely low-frequency chorus waves[J]. Geophysical Research Letters, 2021, 48(22): e2021GL095714 doi: 10.1029/2021GL095714
|
| [27] |
ZONG Q G, ZHOU X Z, WANG Y F, et al. Energetic electron response to ULF waves induced by interplanetary shocks in the outer radiation belt[J]. Journal of Geophysical Research: Space Physics, 2009, 114(A10): A10204
|
| [28] |
LIU X, LIU W L, CAO J B, et al. Dynamic plasmapause model based on THEMIS measurements[J]. Journal of Geophysical Research: Space Physics, 2015, 120(12): 10543-10556
|
| [29] |
GUO D Y, FU S, XIANG Z, et al. Prediction of dynamic plasmapause location using a neural network[J]. Space Weather, 2021, 19(5): e2020SW002622 doi: 10.1029/2020SW002622
|
| [30] |
XIANG Z, LI X L, KAPALI S, et al. Modeling the dynamics of radiation belt electrons with source and loss driven by the solar wind[J]. Journal of Geophysical Research: Space Physics, 2021, 126(6): e2020JA028988 doi: 10.1029/2020JA028988
|
| [31] |
NI B B, SUMMERS D, XIANG Z, et al. Unique banded structures of plasmaspheric hiss waves in the earth's magnetosphere[J]. Journal of Geophysical Research: Space Physics, 2023, 128(3): e2023JA031325 doi: 10.1029/2023JA031325
|
| [32] |
NI B B, ZOU Z Y, FU S, et al. Resonant scattering of radiation belt electrons by off-equatorial magnetosonic waves[J]. Geophysical Research Letters, 2018, 45(3): 1228-1236 doi: 10.1002/2017GL075788
|