留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于神经网络的未来3天Kp指数预报建模与可解释AI应用

王听雨 罗冰显 陈艳红 石育榕 王晶晶 刘四清

王听雨, 罗冰显, 陈艳红, 石育榕, 王晶晶, 刘四清. 基于神经网络的未来3天Kp指数预报建模与可解释AI应用[J]. 空间科学学报, 2024, 44(3): 437-445. doi: 10.11728/cjss2024.03.2023-0107
引用本文: 王听雨, 罗冰显, 陈艳红, 石育榕, 王晶晶, 刘四清. 基于神经网络的未来3天Kp指数预报建模与可解释AI应用[J]. 空间科学学报, 2024, 44(3): 437-445. doi: 10.11728/cjss2024.03.2023-0107
WANG Tingyu, LUO Bingxian, CHEN Yanhong, SHI Yurong, WANG Jingjing, LIU Siqing. Modeling Next 3-day Kp Index Forecasting with Neural Networks and Exploring the Application of Explainable AI (in Chinese). Chinese Journal of Space Science, 2024, 44(3): 437-445 doi: 10.11728/cjss2024.03.2023-0107
Citation: WANG Tingyu, LUO Bingxian, CHEN Yanhong, SHI Yurong, WANG Jingjing, LIU Siqing. Modeling Next 3-day Kp Index Forecasting with Neural Networks and Exploring the Application of Explainable AI (in Chinese). Chinese Journal of Space Science, 2024, 44(3): 437-445 doi: 10.11728/cjss2024.03.2023-0107

基于神经网络的未来3天Kp指数预报建模与可解释AI应用

doi: 10.11728/cjss2024.03.2023-0107 cstr: 32142.14.cjss2024.03.2023-0107
基金项目: 中国科学院战略性先导科技专项(XDB0560000), 国家自然科学基金面上项目(42074224), 中国科学院重点部署项目(ZDRE-KT-2021-3), 中国科学院国家空间科学中心“攀登计划”青年创新课题(E4PD40012S)和中国科学院青年创新促进会共同资助
详细信息
    作者简介:
    • 王听雨 男, 1996年7月出生于湖南省, 现为中国科学院空间科学中心特别研究助理, 主要研究方向为空间天气预报建模、人工智能与空间天气预报交叉. E-mail: wangtingyu@nssc.ac.cn
    通讯作者:
    • 罗冰显 男, 1981年11月出生, 现为中国科学院国家空间科学中心研究员、博士生导师, 国家“万人计划”青年拔尖人才获得者, 中国科学院大学岗位教授, 长期从事空间天气和空间环境预报和应用研究. E-mail: luobx@nssc.ac.cn
  • 中图分类号: P353

Modeling Next 3-day Kp Index Forecasting with Neural Networks and Exploring the Application of Explainable AI

  • 摘要: 当前业务中对未来3天Kp指数预报需求强烈. 但地磁暴中多参数耦合导致难以量化各预报因子对Kp值的贡献, 制约了预报精度提升. 本文构建了神经网络3天Kp指数预报模型, 并使用人工智能(AI)可解释性算法定量化各因子贡献. 结果显示, 行星际磁场南向分量在提前3 h对Kp指数的贡献为37.15%, 为主要因子, 说明模型能捕捉符合物理特征的主要预报因子. Kp指数历史特征贡献随提前量逐渐增加, 提前3天总体贡献占68.06%, 验证了对冕洞高速流引起的地磁暴事件的预报能力. 对2015和2017年特大地磁暴进行贡献分析, 模型准确捕捉了地磁暴多参数耦合的复杂特性. 研究表明, 可解释AI算法在一定程度上能定量化各预报因子对Kp指数的预报贡献, 有助于改进未来3天Kp指数AI预报模型.

     

  • 图  1  未来3天Kp指数预报模型评估结果(2011年4月至2022年6月). 曲线为评估指标随预报时长(3 h分辨率)变化的函数

    Figure  1.  Evaluation results (April 2011 to June 2022) of the future 3 day Kp index forecast. Model depict as a function of the forecast horizon (at a 3 h resolution)

    图  2  2017 年与2015 年两次特大地磁暴时实际结果与预报结果对比

    Figure  2.  Comparison between actual and forecasted Kp index for two extreme geomagnetic storms in 2017 and 2015

    图  3  提前3, 24, 48, 72 h预报Kp指数时7类特征贡献值占比

    Figure  3.  Contribution percentages of the 7 categories of features forecasting the Kp index 3, 24, 48, 72 h in advance

    图  4  93个特征贡献度之和随预报时间的变化(提前3, 24, 48, 72 h)

    Figure  4.  Sum of contributions from 93 features as a function of the forecast horizon (3, 24, 48, 72 h ahead)

    图  5  2017年与2015年两次特大地磁暴时7类特征对预报的贡献占比(提前3 h预报)

    Figure  5.  Contribution percentages of the 7 feature categories to the forecast during the two extreme geomagnetic storms in 2017 and 2015 (3 h lead time)

    图  6  三种拟合能力不同的模型度量的总贡献度随预报时间的变化(提前3, 24, 48, 72 h)

    Figure  6.  Total contribution measured by three models with different fitting abilities varies over forecast horizon (3, 24, 48, 72 h in advance)

    图  7  提前3, 24, 48, 72 h 预报Kp指数时7类特征贡献值占比

    Figure  7.  Contribution percentages of the 7 categories of features forecasting the Kp index 3, 24, 48, 72 h in advance

    表  1  训练模型所用到的超参数以及训练策略

    Table  1.   Hyperparameters and training strategies used for training the model in this study

    参数名 参数值/名称
    Mini batch 1
    Epoch 10
    Optimizer AdamW
    Loss function MSE
    Learning rate 0.004
    Momentum 0.6
    Scheduler StepLR
    下载: 导出CSV

    表  2  用于输入模型的93个特征分类(按照物理参数或者物理特征进行归类)

    Table  2.   Classification of 93 features inputting into model (categorized by physical parameters or characteristics)

    特征类型 特征因子 特征数
    $ {{B}}_{{z}} $  行星际磁场南向分量($ {B}_{z} $)在$ {T}_{0} $时刻之前的 0~3 h, 3~6 h 和 6~9 h内观测到的平均值、
    最大值和最小值
    9
    $ {B} $  总磁场($ B $)在$ {T}_{0} $时刻之前的 0~3 h, 3~6 h和 6~9 h内观测到的平均值、最大值和最小值 9
    $ {v} $  太阳风速度($ v $)在$ {T}_{0} $时刻之前的 0~3 h, 3~6 h和 6~9 h内观测到的平均值、最大值和最小值 9
    $ {n} $  质子密度($ n $)在$ {T}_{0} $时刻之前的 0~3 h, 3~6 h和 6~9 h内观测到的平均值、最大值和最小值 9
    H [Kp (Hist)]  $ {T}_{0} $时刻之前的 3, 6和 9 h的Kp指数 3
    R1 [Kp (Rec 1)]  $ {T}_{0} $时刻之前的 26, 27, 28天(前一个太阳自转周期)的Kp指数在 6, 12, 24 h内的平均值、
    最大值和最小值
    27
    R2 [Kp (Rec 2)]  $ {T}_{0} $时刻之前的 53, 54, 55天(前两个太阳自转周期)的Kp指数在 6, 12, 24 h内的平均值、
    最大值和最小值
    27
    下载: 导出CSV
  • [1] FANG T W, KUBARYK A, GOLDSTEIN D, et al. Space weather environment during the SpaceX starlink satellite loss in February 2022[J]. Space Weather, 2022, 20(11): e2022SW003193 doi: 10.1029/2022SW003193
    [2] 罗冰显, 王荣兰, 刘卫, 等. “星链”卫星毁于地磁暴事件空间环境分析[J]. 国际太空, 2022(5): 35-39 doi: 10.3969/j.issn.1009-2366.2022.05.009

    LUO Bingxian, WANG Ronglan, LIU Wei, et al. Analysis of the space environment in the event of the destruction of the Starlink satellite by a geomagnetic storm[J]. Space International, 2022(5): 35-39 doi: 10.3969/j.issn.1009-2366.2022.05.009
    [3] MATZKA J, STOLLE C, YAMAZAKI Y, et al. The geomagnetic Kp index and derived indices of geomagnetic activity[J]. Space Weather, 2021, 19(5): e2020SW002641 doi: 10.1029/2020SW002641
    [4] WING S, JOHNSON J R, JEN J, et al. Kp forecast models[J]. Journal of Geophysical Research: Space Physics, 2005, 110 (A4): A04203. DOI: 10.1029/2004JA010500
    [5] WINTOFT P, WIK M, MATZKA J, et al. Forecasting Kp from solar wind data: input parameter study using 3-hour averages and 3-hour range values[J]. Journal of Space Weather and Space Climate, 2017, 7: A29 doi: 10.1051/swsc/2017027
    [6] TAN Y, HU Q H, WANG Z, et al. Geomagnetic index Kp forecasting with LSTM[J]. Space Weather, 2018, 16(4): 406-416 doi: 10.1002/2017SW001764
    [7] 肖建军, 龚建村. 国外空间天气保障能力建设及对我国的启示[J]. 航天器环境工程, 2015, 32(1): 9-13 doi: 10.3969/j.issn.1673-1379.2015.01.002

    XIAO Jianjun, GONG Jiancun. Foreign space weather support capability building and the enlightenments to our country[J]. Spacecraft Environment Engineering, 2015, 32(1): 9-13 doi: 10.3969/j.issn.1673-1379.2015.01.002
    [8] LI Rong, QUAN Lin, LI Ling, et al. Review on status and development of space weather services[J/OL]. Progress in Geophysics, (2023-06-27)[2023-09-15]. https://kns.cnki.net/kcms2/article/abstract?v=3uoqIhG8C45S0n9fL2suRadTyEVl2pW9UrhTDCdPD66mi5bQfuHu-RxLnEeZBXUV7crkn5fWLWA2JP2zYD9YfcusDT2ApoMe&uniplatform=NZKPT
    [9] WANG J J, LUO B X, LIU S Q, et al. A machine learning-based model for the next 3-day geomagnetic index (Kp) forecast[J]. Frontiers in Astronomy and Space Sciences, 2023, 10: 1082737 doi: 10.3389/fspas.2023.1082737
    [10] SHPRITS Y Y, VASILE R, ZHELAVSKAYA I S. Nowcasting and predicting the Kp index using historical values and real-time observations[J]. Space Weather, 2019, 17(8): 1219-1229 doi: 10.1029/2018SW002141
    [11] BERNOUX G, BRUNET A, BUCHLIN É, et al. Forecasting the geomagnetic activity several days in advance using neural networks driven by solar EUV imaging[J]. Journal of Geophysical Research: Space Physics, 2022, 127(10): e2022JA030868 doi: 10.1029/2022JA030868
    [12] 3-Day forecast | NOAA / NWS Space Weather Prediction Center[EB/OL]. [2023-09-15]. https://www.swpc.noaa.gov/products/3-day-forecast
    [13] Forecast Kp index–space weather[EB/OL]. [2023-09-15]. https://spaceweather.gfz-potsdam.de/products-data/forecasts/Kp-index-forecast
    [14] 胡晓彦, 徐寄遥, 邹自明. “大数据&人工智能”驱动的空间天气科研范式变革初步探索[J]. 数据与计算发展前沿, 2023, 5(2): 24-36

    HU Xiaoyan, XU Jiyao, ZOU Ziming. Preliminary study on paradigm shift in space weather research driven by big data and artificial intelligence[J]. Frontiers of Data & Computing, 2023, 5(2): 24-36
    [15] HAM Y G, KIM J H, LUO J J. Deep learning for multi-year ENSO forecasts[J]. Nature, 2019, 573(7775): 568-572 doi: 10.1038/s41586-019-1559-7
    [16] ZHANG A X, FU T M, FENG X, et al. Deep learning-based ensemble forecasts and predictability assessments for surface ozone pollution[J]. Geophysical Research Letters, 2023, 50(8): e2022GL102611 doi: 10.1029/2022GL102611
    [17] WANG T Y, HUANG P. Superiority of a convolutional neural network model over dynamical models in predicting central pacific ENSO[J]. Advances in Atmospheric Sciences, 2024, 41(1): 141-154 doi: 10.1007/s00376-023-3001-1
    [18] SUNDARARAJAN M, TALY A, YAN Q Q. Axiomatic attribution for deep networks[C]//Proceedings of the 34th International Conference on Machine Learning. Sydney: JMLR. org, 2017: 3319-3328
    [19] DAS A, RAD P. Opportunities and challenges in explainable artificial intelligence (XAI): a survey[OL]. arXiv preprint arXiv: 2006.11371, 2020
    [20] LU Z, PU H M, WANG F C, et al. The expressive power of neural networks: a view from the width[OL]. arXiv preprint arXiv: 1709.02540, 2017
    [21] PAPITASHVILI N E, KING J H. OMNI 1-min data set[DS/OL]. NASA Space Physics Data Facility, 2020[2023-09-25]. https://hpde.io/NASA/NumericalData/OMNI/HighResolutionObservations/Version1/PT1M
    [22] KNIPP D J, GROSS N A. Understanding space weather and the physics behind it[C]//Proceedings of the American Geophysical Union, Fall Meeting 2011. Washington D C: AGU, 2011
    [23] AUGUSTO C R A, NAVIA C E, DE OLIVEIRA M N, et al. The 2015 summer solstice storm: one of the major geomagnetic storms of solar cycle 24 observed at ground level[J]. Solar Physics, 2018, 293(5): 84 doi: 10.1007/s11207-018-1303-8
    [24] HAJRA R, TSURUTANI B T, LAKHINA G S. The complex space weather events of 2017 September[J]. The Astrophysical Journal, 2020, 899(1): 3 doi: 10.3847/1538-4357/aba2c5
    [25] BADRUDDIN B, ASLAM O P M, DEROUICH M, et al. Forbush decreases and geomagnetic storms during a highly disturbed solar and interplanetary period, 4–10 September 2017[J]. Space Weather, 2019, 17(3): 487-496 doi: 10.1029/2018SW001941
    [26] HAM Y G, KIM J H, MIN S K, et al. Anthropogenic fingerprints in daily precipitation revealed by deep learning[J]. Nature, 2023, 622(7982): 301-307 doi: 10.1038/s41586-023-06474-x
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  567
  • HTML全文浏览量:  167
  • PDF下载量:  83
  • 被引次数: 

    0(来源:Crossref)

    0(来源:其他)

出版历程
  • 收稿日期:  2023-09-27
  • 修回日期:  2023-11-17
  • 网络出版日期:  2024-01-02

目录

    /

    返回文章
    返回