留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

空间生命学科发展战略研究

赵玉芬 华跃进 李一良 孙野青 姚伟 郑慧琼 郝记华 应见喜 陈宇综 田兵

赵玉芬, 华跃进, 李一良, 孙野青, 姚伟, 郑慧琼, 郝记华, 应见喜, 陈宇综, 田兵. 空间生命学科发展战略研究[J]. 空间科学学报, 2024, 44(3): 387-399. doi: 10.11728/cjss2024.03.2024-yg07
引用本文: 赵玉芬, 华跃进, 李一良, 孙野青, 姚伟, 郑慧琼, 郝记华, 应见喜, 陈宇综, 田兵. 空间生命学科发展战略研究[J]. 空间科学学报, 2024, 44(3): 387-399. doi: 10.11728/cjss2024.03.2024-yg07
ZHAO Yufen, HUA Yuejin, LI Yiliang, SUN Yeqing, YAO Wei, ZHENG Huiqiong, HAO Jihua, YING Jianxi, CHEN Yuzong, TIAN Bing. Strategic Study for the Development of Space Life (in Chinese). Chinese Journal of Space Science, 2024, 44(3): 387-399 doi: 10.11728/cjss2024.03.2024-yg07
Citation: ZHAO Yufen, HUA Yuejin, LI Yiliang, SUN Yeqing, YAO Wei, ZHENG Huiqiong, HAO Jihua, YING Jianxi, CHEN Yuzong, TIAN Bing. Strategic Study for the Development of Space Life (in Chinese). Chinese Journal of Space Science, 2024, 44(3): 387-399 doi: 10.11728/cjss2024.03.2024-yg07

空间生命学科发展战略研究

doi: 10.11728/cjss2024.03.2024-yg07 cstr: 32142.14.cjss2024.03.2024-yg07
基金项目: 国家自然科学基金项目资助(42388101, 92256203)
详细信息
    作者简介:
    • 赵玉芬 女, 1948年12月出生于湖北武汉, 1991年当选中国科学院院士. 现任天体化学与空间生命——钱学森空间科学协同研究中心主任, 宁波大学新药技术研究院院长、教授, 清华大学、厦门大学教授. 博士生导师, 主要研究方向为天体生物学、生命起源、生命有机磷化学、化学生物学等. E-mail: zhaoyufen@nbu.edu.cn
  • 中图分类号: V524

Strategic Study for the Development of Space Life

  • 摘要: 空间生命学科是一门致力于研究在空间环境条件下生命起源、演化及其分布, 生命现象及其规律的学科. 该学科从理论和实验两个层面深入探讨生命起源和早期演化机制, 同时也探索地外天体生命的宜居性、存在形式等基本科学问题. 随着中国空间站、嫦娥工程和天问系列等大科学计划的实施, 中国空间生命科学研究进入了一个高速发展阶段. 本文对空间生命领域的发展态势进行了梳理, 提炼出了中国未来空间生命学科的重点发展领域, 并针对学科布局进行优化, 旨在推动空间生命科学研究的高质量发展.

     

  • [1] HYODO R, USUI T. Searching for life on Mars and its moons[J]. Science, 2021, 373(6556): 742 doi: 10.1126/science.abj1512
    [2] KRASNOPOLSKY V A, MAILLARD J P, OWEN T C. Detection of methane in the martian atmosphere: evidence for life[J]. Icarus, 2004, 172(2): 537-547 doi: 10.1016/j.icarus.2004.07.004
    [3] FORMISANO V, ATREYA S, ENCRENAZ T, et al. Detection of methane in the atmosphere of Mars[J]. Science, 2004, 306(5702): 1758-1761 doi: 10.1126/science.1101732
    [4] NOVAK R E, MUMMA M J, VILLANUEVA G L. Measurement of the isotopic signatures of water on Mars; Implications for studying methane[J]. Planetary and Space Science, 2011, 59(2/3): 163-168
    [5] ADCOCK C T, HAUSRATH E M. Weathering profiles in phosphorus-rich rocks at gusev crater, mars, suggest dissolution of phosphate minerals into potentially habitable near-neutral waters[J]. Astrobiology, 2015, 15(12): 1060-1075 doi: 10.1089/ast.2015.1291
    [6] ADCOCK C T, HAUSRATH E M, FORSTER P M. Readily available phosphate from minerals in early aqueous environments on Mars[J]. Nature Geoscience, 2013, 6(10): 824-827 doi: 10.1038/ngeo1923
    [7] MCCORD T B, COMBE J P, CASTILLO-ROGEZ J C, et al. Ceres, a wet planet: The view after Dawn[J]. Geochemistry, 2022, 82(2): 125745 doi: 10.1016/j.chemer.2021.125745
    [8] AMMANNITO E, DESANCTIS M C, CIARNIELLO M, et al. Distribution of phyllosilicates on the surface of Ceres[J]. Science, 2016, 353(6303): aaf4279 doi: 10.1126/science.aaf4279
    [9] CARROZZO F G, DE SANCTIS M C, RAPONI A, et al. Nature, formation, and distribution of carbonates on Ceres[J]. Science Advances, 2018, 4(3): e1701645 doi: 10.1126/sciadv.1701645
    [10] BRAMBLE M S, HAND K P. Spectral evidence for irradiated sodium chloride on the surface of 1 ceres[J]. Geophysical Research Letters, 2022, 49(3): e2021GL096973 doi: 10.1029/2021GL096973
    [11] DE SANCTIS M C, AMMANNITO E, MCSWEEN H Y, et al. Localized aliphatic organic material on the surface of Ceres[J]. Science, 2017, 355(6326): 719-722 doi: 10.1126/science.aaj2305
    [12] MOORE J M, MCKINNON W B. Geologically diverse pluto and charon: implications for the dwarf planets of the kuiper belt[J]. Annual Review of Earth and Planetary Sciences, 2021, 49: 173-200 doi: 10.1146/annurev-earth-071720-051448
    [13] SINGER K N, WHITE O L, SCHMITT B, et al. Large-scale cryovolcanic resurfacing on Pluto[J]. Nature Communications, 2022, 13(1): 1542 doi: 10.1038/s41467-022-29056-3
    [14] GLADSTONE G R, YOUNG L A. New horizons observations of the atmosphere of pluto[J]. Annual Review of Earth and Planetary Sciences, 2019, 47: 119-140 doi: 10.1146/annurev-earth-053018-060128
    [15] STERN S A, GRUNDY W M, MCKINNON W B, et al. The pluto system after new horizons[J]. Annual Review of Astronomy and Astrophysics, 2018, 56: 357-392 doi: 10.1146/annurev-astro-081817-051935
    [16] HANSEN C J, ESPOSITO L, STEWART A I F, et al. Enceladus’ water vapor plume[J]. Science, 2006, 311(5766): 1422-1425 doi: 10.1126/science.1121254
    [17] NIMMO F, SPENCER J R, PAPPALARDO R T, et al. Shear heating as the origin of the plumes and heat flux on Enceladus[J]. Nature, 2007, 447(7142): 289-291 doi: 10.1038/nature05783
    [18] IESS L, STEVENSON D J, PARISI M, et al. The gravity field and interior structure of enceladus[J]. Science, 2014, 344(6179): 78-80 doi: 10.1126/science.1250551
    [19] WAITE J H, COMBI M R, IP W H, et al. Cassini ion and neutral mass spectrometer: enceladus plume composition and structure[J]. Science, 2006, 311(5766): 1419-1422 doi: 10.1126/science.1121290
    [20] WAITE JR J H, LEWIS W S, MAGEE B A, et al. Liquid water on enceladus from observations of ammonia and 40Ar in the plume[J]. Nature, 2009, 460(7254): 487-490 doi: 10.1038/nature08153
    [21] WAITE J H, GLEIN C R, PERRYMAN R S, et al. Cassini finds molecular hydrogen in the Enceladus plume: evidence for hydrothermal processes[J]. Science, 2017, 356(6334): 155-159 doi: 10.1126/science.aai8703
    [22] POSTBERG F, KHAWAJA N, ABEL B, et al. Macromolecular organic compounds from the depths of Enceladus[J]. Nature, 2018, 558(7711): 564-568 doi: 10.1038/s41586-018-0246-4
    [23] NIEMANN H B, ATREYA S K, BAUER S J, et al. The abundances of constituents of Titan’s atmosphere from the GCMS instrument on the Huygens probe[J]. Nature, 2005, 438(7069): 779-784 doi: 10.1038/nature04122
    [24] HÖRST S M. Titan’s atmosphere and climate[J]. Journal of Geophysical Research: Planets, 2017, 122(3): 432-482 doi: 10.1002/2016JE005240
    [25] VUITTON V, YELLE R V, MCEWAN M J. Ion chemistry and N-containing molecules in Titan’s upper atmosphere[J]. Icarus, 2007, 191(2): 722-742 doi: 10.1016/j.icarus.2007.06.023
    [26] MANDT K E, GELL D A, PERRY M, et al. Ion densities and composition of Titan’s upper atmosphere derived from the cassini ion neutral mass spectrometer: Analysis methods and comparison of measured ion densities to photochemical model simulations[J]. Journal of Geophysical Research: Planets, 2012, 117(E10): E10006
    [27] SOTIN C, KALOUSOVÁ K, TOBIE G. Titan’s Interior structure and dynamics after the cassini-huygens mission[J]. Annual Review of Earth and Planetary Sciences, 2021, 49: 579-607 doi: 10.1146/annurev-earth-072920-052847
    [28] GARRETT-BAKELMAN F E, DARSHI M, GREEN S J, et al. The NASA twins study: a multidimensional analysis of a year-long human spaceflight[J]. Science, 2019, 364(6436): eaau8650 doi: 10.1126/science.aau8650
    [29] PIERSON D L, STOWE R P, PHILLIPS T M, et al. Epstein-Barr virus shedding by astronauts during space flight[J]. Brain, Behavior, and Immunity, 2005, 19(3): 235-242 doi: 10.1016/j.bbi.2004.08.001
    [30] VAISHAMPAYAN A, GROHMANN E. Multi-resistant biofilm-forming pathogens on the international space station[J]. Journal of Biosciences, 2019, 44(5): 125 doi: 10.1007/s12038-019-9929-8
    [31] GALAZKA J M. GeneLab: Open Science for Life in Space[R]. Washington: NASA, 2019
    [32] HU S, HE H C, JI J L, et al. A dry lunar mantle reservoir for young mare basalts of Chang’e-5[J]. Nature, 2021, 600(7887): 49-53 doi: 10.1038/s41586-021-04107-9
    [33] WU X, LIU Y, ZHANG C L, et al. Geological characteristics of China’s Tianwen-1 landing site at Utopia Planitia, Mars[J]. Icarus, 2021, 370: 114657 doi: 10.1016/j.icarus.2021.114657
    [34] YING J X, DING R W, ZHANG Y M, et al. Trimetaphosphate-induced chiral selection between amino acid and nucleoside using 15N-31P coupling NMR[J]. Chinese Chemical Letters, 2022, 33(2): 821-824 doi: 10.1016/j.cclet.2021.07.031
    [35] YING J X, FU S S, LI X, et al. A plausible model correlates prebiotic peptide synthesis with the primordial genetic code[J]. Chemical Communications, 2018, 54(62): 8598-8601 doi: 10.1039/C8CC04767G
    [36] HAO J H, GLEIN C R, HUANG F, et al. Abundant phosphorus expected for possible life in Enceladus’s ocean[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(39): e2201388119
    [37] POSTBERG F, SEKINE Y, KLENNER F, et al. Detection of phosphates originating from Enceladus’s ocean[J]. Nature, 2023, 618(7965): 489-493 doi: 10.1038/s41586-023-05987-9
    [38] DAI S, XIE Z M, WANG B Q, et al. An inorganic mineral-based protocell with prebiotic radiation fitness[J]. Nature Communications, 2023, 14(1): 7699 doi: 10.1038/s41467-023-43272-5
    [39] DAI S, WANG B Q, YE R, et al. Structural evolution of bacterial polyphosphate degradation enzyme for phosphorus cycling[J]. Advanced Science, 2024. DOI: 10.1002/advs. 202309602
    [40] LIN Y T, EL GORESY A, HU S, et al. NanoSIMS analysis of organic carbon from the Tissint Martian meteorite: evidence for the past existence of subsurface organic-bearing fluids on Mars[J]. Meteoritics & Planetary Science, 2014, 49(12): 2201-2218
    [41] LI Y L, LI Z K, QIN X R, et al. Gypsum ridges as conduits for deep methane emission in an evaporite basin– Insights into the origin of atmospheric methane on Mars[J]. Earth and Planetary Science Letters, 2024, 641: 118834
    [42] SUN Y Q, WANG W, ZHANG M, et al. Space radiation systems biology research in SJ-10 satellite[M]//DUAN E, LONG M. Life Science in Space: Experiments on Board the SJ-10 Recoverable Satellite. Singapore: Springer, 2019: 43-68
    [43] SHI J M, LU W H, SUN Y Q. Comparison of space flight and heavy ion radiation induced genomic/epigenomic mutations in rice (Oryza sativa)[J]. Life Sciences in Space Research, 2014, 1: 74-79 doi: 10.1016/j.lssr.2014.02.007
    [44] YU X, WU H, WEI L J, et al. Characteristics of phenotype and genetic mutations in rice after spaceflight[J]. Advances in Space Research, 2007, 40(4): 528-534 doi: 10.1016/j.asr.2007.06.022
    [45] GAO Y, XU D, ZHAO L, et al. Effects of microgravity on DNA damage response in Caenorhabditis elegans during Shenzhou-8 spaceflight[J]. International Journal of Radiation Biology, 2015, 91(7): 531-539 doi: 10.3109/09553002.2015.1043754
    [46] GAO Y, XU D, ZHAO L, et al. The DNA damage response of C. elegans affected by gravity sensing and radiosensitivity during the Shenzhou-8 spaceflight[J]. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 2017, 795: 15-26 doi: 10.1016/j.mrfmmm.2017.01.001
    [47] ZHAO L, ZHANG G, TANG A P, et al. Microgravity alters the expressions of DNA repair genes and their regulatory miRNAs in space-flown Caenorhabditis elegans[J]. Life Sciences in Space Research, 2023, 37: 25-38 doi: 10.1016/j.lssr.2023.02.002
    [48] JIANG J H, ZHAO L, GUO L, et al. Integrated analysis of MRNA and MiRNA expression profiles in dys-1 mutants of C. elegans after spaceflight and simulated microgravity[J]. Microgravity Science and Technology, 2023, 35(3): 31 doi: 10.1007/s12217-023-10057-w
    [49] GAO Y, LI S, XU D, et al. Changes in apoptotic microRNA and mRNA expression profiling in Caenorhabditis ele gans during the Shenzhou-8 mission[J]. Journal of Ra diation Research, 2015, 56(6): 872-882 doi: 10.1093/jrr/rrv050
    [50] ZHAO L, HE X Y, CHEN X P, et al. Fitting the generalized target model to cell survival data of proton radiation reveals dose-dependent rbe and inspires an alternative method to estimate RBE in high-dose regions[J]. Radiation Research, 2019, 192(5): 507-516 doi: 10.1667/RR15428.1
    [51] ZHAO L, CHEN X P, TIAN J H, et al. Generalized multi-hit model of radiation-induced cell survival with a closed-form solution: an alternative method for determining isoeffect doses in practical radiotherapy[J]. Radiation Research, 2020, 193(4): 359-371 doi: 10.1667/RR15505.1
    [52] ZHAO L, TANG A P, LONG F, et al. Modeling of ionizing radiation-induced chromosome aberration and tumor prevalence based on two classes of DNA double-strand breaks clustering in chromatin domains[J]. Ecotoxicology and Environmental Safety, 2023, 259: 115038 doi: 10.1016/j.ecoenv.2023.115038
    [53] ZHAO L, MI D, HU B, et al. A generalized target theory and its applications[J]. Scientific Reports, 2015, 5: 14568 doi: 10.1038/srep14568
    [54] ZHAO L, MI D, SUN Y Q. A novel multitarget model of radiation-induced cell killing based on the Gaussian distribution[J]. Journal of Theoretical Biology, 2017, 420: 135-143 doi: 10.1016/j.jtbi.2017.03.002
    [55] ZHAO L, TIAN J T, BORASI G, et al. Improved asymptotic expansions in high- and low-dose ranges for generalized multi-hit model of radiation-induced cell survival[J]. Radiation Research, 2021, 196(3): 306-314
    [56] ZHAO L, GAO Y, MI D, et al. Mining potential biomarkers associated with space flight in Caenorhabditis elegans experienced Shenzhou-8 mission with multiple feature selection techniques[J]. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 2016, 791-792: 27-34 doi: 10.1016/j.mrfmmm.2016.08.002
    [57] ZHAO L, LI Z J, HUANG B H, et al. Integrating evolutionarily conserved mechanism of response to radiation for exploring novel Caenorhabditis elegans radiation-responsive genes for estimation of radiation dose associated with spaceflight[J]. Chemosphere, 2024, 351: 141148 doi: 10.1016/j.chemosphere.2024.141148
    [58] ZHANG Y, DU X H, ZHAO L, et al. Construction of dose prediction model and identification of sensitive genes for space radiation based on single-sample networks under spaceflight conditions[J]. International Journal of Radiation Biology, 2024, 100(5): 777-790 doi: 10.1080/09553002.2024.2327393
    [59] ZHANG Y, ZHAO L, SUN Y Q. Using single-sample networks to identify the contrasting patterns of gene interactions and reveal the radiation dose-dependent effects in multiple tissues of spaceflight mice[J]. npj Microgravity, 2024, 10(1): 45 doi: 10.1038/s41526-024-00383-7
    [60] ZHAO L, HE X Y, SHANG Y X, et al. Identification of potential radiation-responsive biomarkers based on human orthologous genes with possible roles in DNA repair pathways by comparison between Arabidopsis thaliana and homo sapiens[J]. Science of the Total Environment, 2020, 702: 135076 doi: 10.1016/j.scitotenv.2019.135076
    [61] XIE J Y, WANG L H, ZHENG H Q. Molecular basis to integrate microgravity signals into the photoperiodic flowering pathway in Arabidopsis thaliana under spaceflight condition[J]. International Journal of Molecular Sciences, 2022, 23(1): 63
    [62] WANG L H, XIE J Y, MOU C H, et al. Transcriptomic analysis of the interaction between FLOWERING LOCUS T induction and photoperiodic signaling in response to spaceflight[J]. Frontiers in Cell and Developmental Biology, 2022, 9: 813246 doi: 10.3389/fcell.2021.813246
    [63] JIA C X, ZHENG W B, LIU F W, et al. Biological culture module for plant research from seed-to-seed on the chinese space station[J]. Life Sciences in Space Research, 2024, 42: 47-52 doi: 10.1016/j.lssr.2024.04.005
    [64] WANG S S, WANG T, ZENG X, et al. Exploring outer space biophysical phenomena via SpaceLID[J]. Scientific Reports, 2023, 13(1): 17400 doi: 10.1038/s41598-023-44729-9
    [65] WANG S S, WANG J Y, ZENG X, et al. Database of space life investigations and information on spaceflight plant biology[J]. Planta, 2023, 258(3): 58 doi: 10.1007/s00425-023-04213-0
    [66] WANG J Y, WANG T, ZENG X, et al. Database of space life investigations and bioinformatics of microbiology in extreme environments[J]. Frontiers in Microbiology, 2022, 13: 1017773 doi: 10.3389/fmicb.2022.1017773
  • 加载中
计量
  • 文章访问数:  592
  • HTML全文浏览量:  231
  • PDF下载量:  99
  • 被引次数: 

    0(来源:Crossref)

    0(来源:其他)

出版历程
  • 收稿日期:  2024-05-15
  • 修回日期:  2024-05-25
  • 网络出版日期:  2024-06-22

目录

    /

    返回文章
    返回