留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于数据生成和深度神经网络的空间非合作目标行为意图识别

余静 彭晓东 谢文明 覃润楠 王有亮

余静, 彭晓东, 谢文明, 覃润楠, 王有亮. 基于数据生成和深度神经网络的空间非合作目标行为意图识别[J]. 空间科学学报, 2024, 44(6): 1134-1146. doi: 10.11728/cjss2024.06.2023-0151
引用本文: 余静, 彭晓东, 谢文明, 覃润楠, 王有亮. 基于数据生成和深度神经网络的空间非合作目标行为意图识别[J]. 空间科学学报, 2024, 44(6): 1134-1146. doi: 10.11728/cjss2024.06.2023-0151
YU Jing, PENG Xiaodong, XIE Wenming, QIN Runnan, WANG Youliang. Spatial Non-cooperative Target Behavior Intent Recognition Based on Data Generation and Deep Neural Networks (in Chinese). Chinese Journal of Space Science, 2024, 44(6): 1134-1146 doi: 10.11728/cjss2024.06.2023-0151
Citation: YU Jing, PENG Xiaodong, XIE Wenming, QIN Runnan, WANG Youliang. Spatial Non-cooperative Target Behavior Intent Recognition Based on Data Generation and Deep Neural Networks (in Chinese). Chinese Journal of Space Science, 2024, 44(6): 1134-1146 doi: 10.11728/cjss2024.06.2023-0151

基于数据生成和深度神经网络的空间非合作目标行为意图识别

doi: 10.11728/cjss2024.06.2023-0151 cstr: 32142.14.cjss.2023-0151
详细信息
    作者简介:
    • 余静 女, 国科大杭州高等研究院硕士研究生, 主要研究方向为空间非合作目标意图识别. E-mail: yujing21@mails.ucas.ac.cn
    通讯作者:
    • 彭晓东 男, 中国科学院国家空间科学中心研究员, 主要研究方向为航天任务高精度仿真分析与评估、空间大数据智能分析与行为预测以及无人设备智能应用. E-mail: pxd@nssc.ac.cn
  • 中图分类号: V19

Spatial Non-cooperative Target Behavior Intent Recognition Based on Data Generation and Deep Neural Networks

  • 摘要: 在信息化条件下, 空间环境变得日益复杂, 空间非合作目标数量日益增长, 地面操作人员难以迅速准确地根据非合作目标的运动规律识别其意图, 因此提出基于堆叠自编码器(SAE)和门控循环网络(GRU)的空间非合作目标行为意图识别模型, 用于协助地面操作人员识别非合作目标的意图. 该模型利用自编码器对时间序列数据进行压缩, 提取其中的关键特征, 并采用GRU网络对轨迹进行分类. 由于目前尚无公开的非合作目标行为的轨道数据可供使用, 仅依靠少量已知数据难以充分训练模型. 为解决样本不足导致识别效果不佳的问题, 提出一种仿真样本生成方法, 通过仿真得到大量目标行为的轨道数据, 可用于空间非合作目标行为意图的识别. 得到仿真数据后, 将仿真数据集作为输入开展实验, 结果显示, 与仅使用长短期记忆网络(LSTM)、门控循环单元–全卷积网络(GRU-FCN)、堆叠自编码器(SAE)以及反向传播(BP)等单一模型相比, 本方法在准确率、损失值性能指标上均有显著提升, 准确率达到了97.8%.

     

  • 图  1  样本数据仿真流程

    Figure  1.  Sample data simulation flow chart

    图  2  地心惯性坐标系及轨道六根数

    Figure  2.  Geocentric inertial coordinate system and six numbers of orbits

    图  3  平近点角

    Figure  3.  Flat near point angle

    图  4  主从星轨道坐标系

    Figure  4.  Master-slave star tracker coordinate system

    图  5  Lambert转移轨道

    Figure  5.  Lambert transfer orbit diagram

    图  6  绕飞构型平面投影

    Figure  6.  Flight path configuration in planar projection

    图  7  地球仿真平面与立体效果

    Figure  7.  Earth simulation plane and three-dimensional effects

    图  8  抵近意图仿真结果 (红色为目标卫星, 蓝色为非合作目标卫星)

    Figure  8.  Simulation results of approach intent (Red is the target satellite, blue is the non-cooperative target satellite )

    图  9  探测意图仿真结果 (红色为目标卫星, 蓝色为非合作目标卫星)

    Figure  9.  Simulation results for detection intent (Red is the target satellite, blue is the non-cooperative target satellite)

    图  10  轨道保持意图仿真结果(红色为目标卫星, 蓝色为非合作目标卫星, 黑框部分为偏离轨道)

    Figure  10.  Simulation results for orbit maintenance intent (Red part is the target satellite, the blue part is the non-cooperative target satellite, and the black frame part is the part that is off track)

    图  11  整体模型架构

    Figure  11.  Overall model architecture

    图  12  意图类别编码

    Figure  12.  Diagram of intent category encoding

    图  13  模型参数设置实验结果

    Figure  13.  Experimental results of model parameter setting

    图  14  不同模型训练损失值与准确率

    Figure  14.  Training loss and accuracy for different models

    图  15  意图识别结果的混淆矩阵

    Figure  15.  Confusion matrix of intent recognition result

    表  1  抵近意图目标星与非合作目标星轨道根数

    Table  1.   Orbital elements of intended target stars and non-cooperative target stars for approach intent

    轨道根数 目标卫星 非合作目标卫星 Lambert转移轨道
    半长轴a/km 12000 7000 9490.01
    偏心率e 0 0 0.2646
    轨道倾角i/(°) 10 10 10
    升交点赤经Ω/(°) 0 0 2.94093
    近地点幅角ω/(°) 235 235 65.2729
    平近点角M/(°) 0 0 2.3429
    下载: 导出CSV

    表  2  探测意图目标卫星以及非合作目标卫星轨道根数

    Table  2.   Orbital elements of intended target satellites and non-cooperative target satellites for detection intent

    轨道根数 目标卫星 非合作目标卫星 绕飞轨道根数 转移轨道根数
    半长轴a/km 12000.5667 7000.0789 12000 9182.77
    偏心率e 0 0 0 0.360
    轨道倾角i/(°) 10 10 0.175 7.436
    升交点赤经Ω/(°) 0 0 3.126 101.496
    近地点幅角ω/(°) 235 235 321.858 339.325
    平近点角M/(°) 0 0 3.142 33.034
    下载: 导出CSV

    表  3  轨道保持意图目标星与非合作目标星轨道根数

    Table  3.   Orbital elements of target satellites and non-cooperative target satellites for orbit maintenance intent

    轨道根数 目标卫星 非合作目标卫星 偏离轨道
    半长轴 a/km 14000 7333 7338
    偏心率$ {{{e}}} $ 0 0.233 0.233
    轨道倾角i/(°) 10 12 12
    升交点赤经 Ω/(°) 0 0 360
    近地点幅角 ω/(°) 235 235 234.9
    平近点角M/(°) 0 0 94.97
    下载: 导出CSV

    表  4  模型超参数

    Table  4.   Hyperparameters of the model

    网络主要参数
    学习率0.001
    批尺寸128
    迭代轮次100
    优化器Adam
    随机失活率/(%)50
    下载: 导出CSV

    表  5  对比实验结果

    Table  5.   Comparison of experimental results

    模型 训练损失 训练准确率/(%)
    SAE-GRU 0.0882 97.80
    GRU-FCN 0.1843 94.72
    LSTM 0.1775 95.34
    BP 0.2342 88.89
    SAE 0.2121 90.89
    下载: 导出CSV
  • [1] JI Xiang. Study of Situation Assessment Techniques Based on Clustering and Matching[D]. Changsha: National University of Defense Technology, 2016
    [2] 赵福均, 周志杰, 胡昌华, 等. 基于置信规则库和证据推理的空中目标意图识别方法[J]. 电光与控制, 2017, 24(8): 15-19,50 doi: 10.3969/j.issn.1671-637X.2017.08.004

    ZHAO Fujun, ZHOU Zhijie, HU Changhua, et al. Aerial target intention recognition approach based on belief-rule-base and evidential reasoning[J]. Electronics Optics & Control, 2017, 24(8): 15-19,50 doi: 10.3969/j.issn.1671-637X.2017.08.004
    [3] WANG Haiwang, SHI Hongquan, LI Xiaodan. An intention recognition method based on intuitionistic fuzzy sets and Bayesian inference[J]. Ship Electronic Engineering, 2019, 39(6): 42-45 doi: 10.3969/j.issn.1672-9730.2019.06.011
    [4] FAN Hanyang, GAO Ruiyuan, JIN Xinghua. Research on intention estimation method based on fuzzy random Bayesian networks[J]. Fire Control & Command Control, 2019, 44(7): 100-104,109 doi: 10.3969/j.issn.1002-0640.2019.07.019
    [5] 伍之前, 李登峰. 基于推理和多属性决策的空中目标攻击意图判断模型[J]. 电光与控制, 2010, 17(5): 10-13 doi: 10.3969/j.issn.1671-637X.2010.05.003

    WU Zhiqian, LI Dengfeng. A model for aerial target attacking intention judgment based on reasoning and multi-attribute decision making[J]. Electronics Optics & Control, 2010, 17(5): 10-13 doi: 10.3969/j.issn.1671-637X.2010.05.003
    [6] HE Yu, CHANG Leilei, JIANG Jiang, et al. Intension identification in air defense based on belief rule base expert system under expert guidance[J]. Fire Control & Command Control, 2017, 42(9): 7-12 doi: 10.3969/j.issn.1002-0640.2017.09.002
    [7] 贾苏元, 徐金钰, 王钰. 基于自适应神经网络模糊系统(ANFIS)的空中目标意图分类[J]. 电子测量技术, 2016, 39(12): 62-66 doi: 10.3969/j.issn.1002-7300.2016.12.013

    JIA Suyuan, XU Jinyu, WANG Yu. Classification of air target intention based on adaptive neural network fuzzy system (ANFIS)[J]. Electronic Measurement Technology, 2016, 39(12): 62-66 doi: 10.3969/j.issn.1002-7300.2016.12.013
    [8] TENG F, SONG Y F, GUO X P. Attention-TCN-BiGRU: an air target combat intention recognition model[J]. Mathematics, 2021, 9(19): 2412. doi: 10.3390/math9192412
    [9] 李颖, 武君胜, 李伟刚, 等. 一种识别作战意图的层次聚合模型[J]. 西北工业大学学报, 2023, 41(2): 400-408 doi: 10.3969/j.issn.1000-2758.2023.02.018

    LI Ying, WU Junsheng, LI Weigang, et al. A hierarchical aggregation model for combat intention recognition[J]. Journal of Northwestern Polytechnical University, 2023, 41(2): 400-408 doi: 10.3969/j.issn.1000-2758.2023.02.018
    [10] QU C X, GUO Z C, XIA S J, et al. Intention recognition of aerial target based on deep learning[J]. Evolutionary Intelligence, 2024, 17(1): 303-311 doi: 10.1007/s12065-022-00728-9
    [11] WANG Yang. Research on battlefield target identification and situation intention forecasting[D]. Wuxi: Jiangnan University, 2015
    [12] XIAO Q L, LIU Y N, DENG X Y, et al. A robust target intention recognition method based on dynamic Bayesian network[C]//Proceedings of the 33rd Chinese Control and Decision Conference. Kunming: IEEE, 2021: 6846-6851. DOI: 10.1109/CCDC52312.2021.9602205
    [13] ZHANG C H, ZHOU Y, LI H, et al. Combat intention recognition of air targets based on 1DCNN-BiLSTM[J]. IEEE Access, 2023, 11: 134504-134516 doi: 10.1109/ACCESS.2023.3337640
    [14] ZHANG Y, MA W C, HUANG F H, et al. A novel air target intention recognition method based on sample reweighting and attention-Bi-GRU[J]. IEEE Systems Journal, 2024, 18(1): 501-504 doi: 10.1109/JSYST.2023.3319643
    [15] LAI J, WANG X D, XIANG Q, et al. A semi-supervised stacked autoencoder using the pseudo label for classification tasks[J]. Entropy, 2023, 25(9): 1274 doi: 10.3390/e25091274
    [16] 朱正龙, 闫野, 杨跃能. 高精度空间非合作式相对轨道状态预报[J]. 国防科技大学学报, 2016, 38(3): 81-87 doi: 10.11887/j.cn.201603014

    ZHU Zhenglong, YAN Ye, YANG Yueneng. High-accuracy state propagation of non-cooperative relative orbit in space[J]. Journal of National University of Defense Technology, 2016, 38(3): 81-87 doi: 10.11887/j.cn.201603014
    [17] 徐利民, 张涛, 陶佳伟. 能量最优与燃料最优Lambert交会问题[J]. 北京航空航天大学学报, 2018, 44(9): 1888-1893

    XU Limin, ZHANG Tao, TAO Jiawei. Energy-optimal and fuel-optimal problems for lambert rendezvous[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(9): 1888-1893
    [18] CUI Wenhao. Research on the Satellite Formation Reconfiguration and Keeping under J2 Perturbation[D]. Harbin: Harbin Engineering University, 2019
    [19] VALLADO A D. Fundamentals of Astrodynamics and Applications[M]. 4th ed. Hawthorne: Microcosm Press, 2013: 628-636
    [20] WANG Youliang. Relative Trajectory Optimization and Control for Satellite Formation Flying[D]. Beijing: University of Chinese Academy of Sciences (National Space Science Center, Chinese Academy of Sciences), 2018
    [21] LI Wenxin. Research on Modeling and Accuracy Evaluation Technology of Spacecraft Unpowered Rendezvous[D]. Beijing: Beijing Jiaotong University, 2022. DOI: 10.26944/d.cnki.gbfju.2022.002957
    [22] SABOL C, MCLAUGHLIN C A, LUU K K. Meet the cluster orbits with perturbations of Keplerian elements (COWPOKE) equations[J]. Advances in the Astronautical Sciences, 2003, 114: 573-594
    [23] 韩潮, 殷建丰. 基于相对轨道要素的椭圆轨道卫星相对运动研究[J]. 航空学报, 2011, 32(12): 2244-2258

    HAN Chao, YIN Jianfeng. Study of satellite relative motion in elliptical orbit using relative orbit elements[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(12): 2244-2258
    [24] 丁鹏, 宋亚飞. 代价敏感的空中目标意图识别方法[J]. 航空学报, 2023, 44(24): 328551 doi: 10.7527/S1000-6893.2023.2855

    DING Peng, SONG Yafei. A cost-sensitive method for aerial target intention recognition[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(24): 328551 doi: 10.7527/S1000-6893.2023.2855
    [25] ZHANG Shanbin. Emotional classification of short-term ECG signals using BP neural network[J]. Journal of Fujian Computer, 2024, 40(2): 11-16 doi: 10.16707/j.cnki.fjpc.2024.02.003
    [26] 方华珍, 刘立, 顾青, 等. 基于轨迹预测和极限梯度提升的驾驶意图识别[J]. 吉林大学学报(工学版), 2024: 1-9

    FANG Huazhen, LIU Li, GU Qing, et al. Driving intention recognition based on trajectory prediction and extreme gradient boosting[J]. Journal of Jilin University(Engineering and Technology Edition), 2024: 1-9
  • 加载中
图(15) / 表(5)
计量
  • 文章访问数:  1122
  • HTML全文浏览量:  232
  • PDF下载量:  151
  • 被引次数: 

    0(来源:Crossref)

    0(来源:其他)

出版历程
  • 收稿日期:  2023-12-26
  • 修回日期:  2024-02-26
  • 网络出版日期:  2024-05-24

目录

    /

    返回文章
    返回