留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激光雷达观测研究低纬度地区钠层季节变化特征

何诗敏 张铁民 柴薇薇 张一民 羊大立 彭鸿雁 王继红

何诗敏, 张铁民, 柴薇薇, 张一民, 羊大立, 彭鸿雁, 王继红. 激光雷达观测研究低纬度地区钠层季节变化特征[J]. 空间科学学报, 2025, 45(1): 102-112. doi: 10.11728/cjss2025.01.2024-0035
引用本文: 何诗敏, 张铁民, 柴薇薇, 张一民, 羊大立, 彭鸿雁, 王继红. 激光雷达观测研究低纬度地区钠层季节变化特征[J]. 空间科学学报, 2025, 45(1): 102-112. doi: 10.11728/cjss2025.01.2024-0035
HE Shimin, ZHANG Tiemin, CHAI Weiwei, ZHANG Yimin, YANG Dali, PENG Hongyan, WANG Jihong. Seasonal Variation Characteristics of Sodium Layer in Low Latitude by Lidar (in Chinese). Chinese Journal of Space Science, 2025, 45(1): 102-112 doi: 10.11728/cjss2025.01.2024-0035
Citation: HE Shimin, ZHANG Tiemin, CHAI Weiwei, ZHANG Yimin, YANG Dali, PENG Hongyan, WANG Jihong. Seasonal Variation Characteristics of Sodium Layer in Low Latitude by Lidar (in Chinese). Chinese Journal of Space Science, 2025, 45(1): 102-112 doi: 10.11728/cjss2025.01.2024-0035

激光雷达观测研究低纬度地区钠层季节变化特征

doi: 10.11728/cjss2025.01.2024-0035 cstr: 32142.14.cjss.2024-0035
基金项目: 海南省自然科学基金项目资助(121MS0770, 121RC535)
详细信息
    作者简介:
    • 何诗敏 女, 1998年3月出生于广东省茂名市, 现为海南师范大学物理与电子工程学院硕士研究生, 主要研究方向为激光雷达. E-mail: 18312554903@163.com
    通讯作者:
    • 张铁民 男, 1968年7月出生于吉林省吉林市, 现为海南师范大学物理与电子工程学院教授, 硕士生导师, 主要研究方向为激光雷达、光电子材料与器件等. E-mail: 060049@hainu.edu.cn
  • 中图分类号: P352

Seasonal Variation Characteristics of Sodium Layer in Low Latitude by Lidar

  • 摘要: 使用钠荧光激光雷达观测2018-2019年低纬度地区海口(20.0°N, 110.3°E)上空钠层变化规律, 统计分析了钠层密度分布与其季节变化特征以及特殊事件的季节变化特征, 发现海口钠层变化与季节之间有较大关联. 钠层平均密度呈现基本对称的高斯分布特点, 柱密度和峰值秋冬季大, 峰值位置夏高秋低, 质心高度变化稳定, 半高全宽与均方根宽度秋季小冬季大. 突发钠层事件 (Sporadic Sodium Layer, SSL)随季节变化明显, 持续时间夏长春短, 峰值秋季大、春季小, 秋冬季峰值位置较高, 夏季突发强度最大, 除秋季外其他季节突发峰值多在后半夜. 结合海南儋州(19.5°N, 109.1°E)测高仪数据, 结果显示海口地区发生在97 km以上的SSL与突发E层(Es)有较大相关性. 低纬度地区冬季发生SSL的概率较高, 双钠层(Double Sodium Layer, DSL)多出现在春、夏季.

     

  • 图  1  海口夜间激光雷达观测天数及其小时数的统计

    Figure  1.  Histograms of lidar observing nights and hours at Haikou

    图  2  海口上空钠层两年平均密度廓线

    Figure  2.  Average density profiles of sodium layer over Haikou

    图  3  钠层月平均分布

    Figure  3.  Sodium layer monthly variation

    图  4  海口上空各季节的钠层平均钠密度分布与两年平均钠层密度分布的对比(a)及钠层密度峰值、峰值位置、FWHM随季节变化(b)

    Figure  4.  Comparison between the seasonal average sodium density and ADSL distribution (a) and the seasonal fits to the data of sodium layer over Haikou (b)

    图  5  2018-2019年海口上空钠层各参数的统计结果(散点表示日平均值, 实线为参数月平均值的拟合曲线)

    Figure  5.  Statistics of sodium layer from 2018 to 2019 over Haikou (Scatter represents the daily average, lines represent the mean parameter values in every month)

    图  6  2018-2019年海口上空钠层各参数的季节变化曲线

    Figure  6.  Seasonal fits to the data of sodium layer from 2018 to 2019

    图  7  2019年10月3日海口上空典型的强烈SSL

    Figure  7.  An SSL event observed on 3 Oct. 2019 over Haikou

    图  8  SSL各参数随季节变化

    Figure  8.  Seasonal variation curve of SSL

    图  9  海口地区不同SSL峰值高度下SSL与Es的参数对比

    Figure  9.  Comparison between SSL and Es with different peak altitude in Haikou

    图  10  2018年5月24日海口上空的DSL事件

    Figure  10.  A DSL event observed on 24 May 2018 over Haikou

    表  1  海口地区钠荧光激光雷达参数

    Table  1.   Main parameters of Na fluorescence lidars at Haikou

    组成部分 参数
    激光发射单元 双波长/nm 532 / 589
    脉冲能量/mJ 42
    频率/Hz 50
    发散角/mrad 1
    接收单元 望远镜直径/mm 1000
    视场角/mrad 2
    滤光片带宽/nm 1
    数据采集与控制单元 空间分辨率/m 96
    时间分辨率/s 20
    下载: 导出CSV

    表  2  钠层突发事件的观测统计

    Table  2.   Statistical chart of SSL observation in different seasons

    季节 总钠层
    观测天数
    SSL观测天数 SSL产生概率/(%) SSL件数 SSL观测
    过程完整件数
    70 9 12.86 16 14
    39 9 23.08 14 10
    88 18 20.45 33 22
    34 9 26.47 10 4
    总计 231 45 19.91 73 50
    下载: 导出CSV

    表  3  2018-2019年海口观测SSL和海南儋州观测Es的主要参数

    Table  3.   Main parameters of SSL at Haikou ($ 20.0°\mathbf{N}, 110.3°\mathbf{E} $) and Es events observed at Danzhou ($ 19.5°\mathbf{N}, 109.1°\mathbf{E} $) in 2018-2019

    序号 日期 SSL Es 时间差/min
    峰值时刻(LT) 峰值高度/km 强度因子 最低高度/km F0Es/MHz
    1 12 Jan. 2018 22:52 96.67 3.6 110 4.28 –37
    2 21 Mar. 2018 21:53 92.83 2 106.3 3.55 –23
    3 1 May. 2018 03:00 99.17 2.2 110 4.85 –60
    4 06 May. 2018 04:41 97.63 3.4 115.8 5.35 –26
    5 31 May. 2018 21:28 94.56 4.3 108.8 4.83 –28
    6 3 Dec. 2018 01:24 104.4 2 102.5 4.28 –9
    7 27 Apr. 2019 22:01 92.64 3.5 110 4.83 –121
    8 27 Apr. 2019 22:15 93.22 2 110 5.38 –105
    9 27 Apr. 2019 00:02 90.91 2.3 112.5 4.97 –152
    10 27 Apr. 2019 00:31 90.62 2.3 107.5 5.45 –106
    11 27 Apr. 2019 01:19 90.53 2 107.5 4.67 –124
    12 19 May. 2019 23:54 97.25 2 105 5.78 –34
    13 19 May. 2019 00:58 97.06 2.2 102.5 7.2 –63
    14 23 May. 2019 04:51 93.02 2.3 100 5.2 –456
    15 9 Jun. 2019 01:47 93.98 2.7 95 3.45 –287
    16 27 Jul. 2019 03:12 92.83 2 102.5 3.8 –102
    17 28 Jul. 2019 20:56 96 13 105 7.15 –206
    18 28 Jul. 2019 21:20 96 2.3 102.5 6 –170
    19 7 Aug. 2019 04:17 95.62 3 102.5 5.75 –167
    20 30 Sept. 2019 19:34 102 2.4 103.3 15.43 –44
    21 30 Sept. 2019 20:54 101.4 2.1 101.3 14.1 –99
    22 30 Sept. 2019 21:52 101.1 2.1 102.5 8.6 –137
    23 3 Oct. 2019 23:04 99.65 3 100 5.67 –88
    24 3 Oct. 2019 00:07 98.88 2.8 100 6.83 –77
    25 4 Oct. 2020 05:30 91.49 2.8 102.5 4.53 –140
    26 5 Oct. 2019 00:44 96.38 2 107.5 4.83 –79
    27 17 Nov. 2019 00:09 96.58 3.2 102.5 6.6 –114
    28 12 Dec. 2019 02:20 95.81 2 105 3.77 –125
      时间差为SSL达到最大峰值密度与Es突发最小高度的时间差, “–”表示Es突发达到最小高度早于SSL达到最大峰值密度.
    下载: 导出CSV

    表  4  SSL与Es随季节变化的对比

    Table  4.   Comparison between SSL and Es with seasonal variation

    季节 SSL Es 高度差/km 时间差/min
    峰值高度/km 强度因子 最低高度/km F0Es/MHz
    97.78 2.45 108.32 5.8 10.54 –52.33
    100.61 2.48 101.42 10.13 0.81 –82.5
    104.4 2 102.5 4.28 1.9 –9
    下载: 导出CSV

    表  5  2018-2019年海口DSL事件主要参数

    Table  5.   Characteristics of double sodium layer over Haikou from 2018 to 2019

    日期开始时间(LT)峰值高度/km峰值密度/cm–3FWHM
    /km
    持续时间/minRCD/(%)RPD/(%)
    9 Mar. 201821:46104.58811.65238.4218.27
    24 May 201803:53105.512735.613729.5148.22
    6 Jun. 201923:26108.71963.62224.889.10
    下载: 导出CSV
  • [1] SHE C Y, YU J R, LATIFI H, et al. High-spectral-resolution fluorescence light detection and ranging for mesospheric sodium temperature measurements[J]. Applied Optics, 1992, 31(12): 2095-2106 doi: 10.1364/AO.31.002095
    [2] BOWMAN M R, GIBSON A J, SANDFORD M C W. Atmospheric sodium measured by a tuned laser radar[J]. Nature, 1969, 221(5179): 456-457 doi: 10.1038/221456a0
    [3] YUE X C, ZHOU Q H, YI F, et al. Simultaneous and common-volume lidar observations of K/Na layers and temperature at Arecibo Observatory (18°N, 67°W)[J]. Journal of Geophysical Research: Atmospheres, 2016, 121(13): 8038-8054 doi: 10.1002/2015JD024494
    [4] WU F J, CHU X Z, DU L F, et al. First simultaneous lidar observations of thermosphere-ionosphere sporadic Ni and Na (TISNi and TISNa) layers (∼105-120 km) over Beijing (40.42°N, 116.02°E)[J]. Geophysical Research Letters, 2022, 49(16): e2022GL100397 doi: 10.1029/2022GL100397
    [5] ANDRIOLI V F, XU J Y, BATISTA P P, et al. C-structures in mesospheric Na and K layers and their relations with dynamical and convective instabilities[J]. Atmosphere, 2022, 13(11): 1867 doi: 10.3390/atmos13111867
    [6] CLEMESHA B R, KIRCHHOFF V W J H, SIMONICH D M, et al. Evidence of an extra-terrestrial source for the mesospheric sodium layer[J]. Geophysical Research Letters, 1978, 5(10): 873-876 doi: 10.1029/GL005i010p00873
    [7] FONTES P A, MUELLA M T A H, RESENDE L C A, et al. Evidence of anti-correlation between sporadic (Es) layers occurrence and solar activity observed at low latitudes over the Brazilian sector[J]. Advances in Space Research, 2024, 73(7): 3563-3577 doi: 10.1016/j.asr.2023.09.040
    [8] FONTES P A, DE ASSIS HONORATO MUELLA M T, RESENDE L C A, et al. Effects of the terdiurnal tide on the Sporadic E (Es) layer development at low latitudes over the Brazilian sector[J]. Annales Geophysicae, 2023, 41(1): 209-224 doi: 10.5194/angeo-41-209-2023
    [9] GONG S S, YANG G T, WANG J M, et al. A double sodium layer event observed over Wuhan, China by lidar[J]. Geophysical Research Letters, 2003, 30(5): 1209
    [10] CLEMESHA B R, SIMONICH D M, TAKAHASHI H, et al. The annual variation of the height of the atmospheric sodium layer at 23°S: Possible evidence for convective transport[J]. Journal of Geophysical Research: Atmospheres, 1992, 97(D5): 5981-5985 doi: 10.1029/91JD03146
    [11] KWON K H, GARDNER C S, SENFT D C, et al. Daytime lidar measurements of tidal winds in the mesospheric sodium layer at Urbana, Illinois[J]. Journal of Geophysical Research: Space Physics, 1987, 92(A8): 8781-8786 doi: 10.1029/JA092iA08p08781
    [12] FAN Z Y, PLANE J M C, GUMBEL J, et al. Satellite measurements of the global mesospheric sodium layer[J]. Atmospheric Chemistry and Physics, 2007, 7(15): 4107-4115 doi: 10.5194/acp-7-4107-2007
    [13] SIMONICH D M, CLEMESHA B R, KIRCHHOFF V W J H. The mesospheric sodium layer at 23°S: nocturnal and seasonal variations[J]. Journal of Geophysical Research: Space Physics, 1978, 84(A4): 1543-1550
    [14] VISHNU PRASANTH P, SIVAKUMAR V, SRIDHARAN S, et al. Lidar observations of sodium layer over low latitude, Gadanki (13.5°N, 79.2°E): Seasonal and nocturnal variations[J]. Annales Geophysicae, 2009, 27(10): 3811-3823 doi: 10.5194/angeo-27-3811-2009
    [15] GONG S H, YANG G T, XU J Y, et al. Nighttime and seasonal variations of the sodium layer measured by lidar at different latitudes in China[J]. Chinese Journal of Geophysics, 2013, 56(4): 361-372 doi: 10.1002/cjg2.20035
    [16] SIMONICH D, CLEMESHA B. Sporadic sodium layers and the average vertical distribution of atmospheric sodium: Comparison of different NaS layer strengths[J]. Advances in Space Research, 2008, 42(1): 229-233 doi: 10.1016/j.asr.2008.03.027
    [17] ANDRIOLI V F, XU J, BATISTA P P, et al. Simultaneous observation of sporadic potassium and sodium layers over São José dos Campos, Brazil (23.1°S, 45.9°W)[J]. Journal of Geophysical Research: Space Physics, 2021, 126(5): e2020JA028890 doi: 10.1029/2020JA028890
    [18] FONTES P A, MUELLA M T A H, RESENDE L C A, et al. Effects of the Northern Hemisphere sudden stratospheric warmings on the Sporadic-E layers in the Brazilian sector[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2024, 256: 106199 doi: 10.1016/j.jastp.2024.106199
    [19] QIU S C, TANG Y H, JIA M J, et al. A review of latitudinal characteristics of sporadic sodium layers, including new results from the Chinese Meridian Project[J]. Earth-Science Reviews, 2016, 162: 83-106 doi: 10.1016/j.earscirev.2016.07.004
    [20] QIU S C, WANG N, SOON W, et al. The sporadic sodium layer: a possible tracer for the conjunction between the upper and lower atmospheres[J]. Atmospheric Chemistry and Physics, 2021, 21(15): 11927-11940 doi: 10.5194/acp-21-11927-2021
    [21] TANG Q, ZHOU C, LIU H X, et al. Global structure and seasonal variations of the tidal amplitude in sporadic-E layer[J]. Journal of Geophysical Research: Space Physics, 2022, 127(10): e2022JA030711 doi: 10.1029/2022JA030711
    [22] TANG Q, ZHAO J Q, YU Z B, et al. Occurrence and variations of middle and low latitude sporadic E layer investigated with longitudinal and latitudinal chains of ionosondes[J]. Space Weather, 2021, 19(12): e2021SW002942 doi: 10.1029/2021SW002942
    [23] XIA Y, NOZAWA S, JIAO J, et al. Statistical study on sporadic sodium layers (SSLs) based on diurnal sodium lidar observations at Beijing, China (40.5°N, 116°E)[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2021, 212: 105512 doi: 10.1016/j.jastp.2020.105512
    [24] JIAO J, YANG G T, ZOU X, et al. Joint observations of sporadic sodium and sporadic E layers at middle and low latitudes in China[J]. Chinese Science Bulletin, 2014, 59(29/30): 3868-3876
    [25] YANG D L, ZHANG T M, WANG J H, et al. Characteristics of double sodium layer over Haikou, China (20.0°N, 110.1°E)[J]. Solar-Terrestrial Physics, 2019, 5(2): 28-32 doi: 10.12737/stp-52201904
  • 加载中
图(10) / 表(5)
计量
  • 文章访问数:  339
  • HTML全文浏览量:  126
  • PDF下载量:  49
  • 被引次数: 

    0(来源:Crossref)

    0(来源:其他)

出版历程
  • 收稿日期:  2024-03-10
  • 修回日期:  2024-05-09
  • 网络出版日期:  2024-07-15

目录

    /

    返回文章
    返回