留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于高性能纤维的空间结构与制造材料

赵洋 韩成

赵洋, 韩成. 基于高性能纤维的空间结构与制造材料[J]. 空间科学学报, 2025, 45(2): 556-567. doi: 10.11728/cjss2025.02.2024-0154
引用本文: 赵洋, 韩成. 基于高性能纤维的空间结构与制造材料[J]. 空间科学学报, 2025, 45(2): 556-567. doi: 10.11728/cjss2025.02.2024-0154
ZHAO Yang, HAN Cheng. High Performance Fibers-based Space Structure and Manufacturing Materials (in Chinese). Chinese Journal of Space Science, 2025, 45(2): 556-567 doi: 10.11728/cjss2025.02.2024-0154
Citation: ZHAO Yang, HAN Cheng. High Performance Fibers-based Space Structure and Manufacturing Materials (in Chinese). Chinese Journal of Space Science, 2025, 45(2): 556-567 doi: 10.11728/cjss2025.02.2024-0154

基于高性能纤维的空间结构与制造材料

doi: 10.11728/cjss2025.02.2024-0154 cstr: 32142.14.cjss.2024-0154
基金项目: 国家自然科学基金项目(52202031)和中国科协青年人才托举工程项目(YESS20220672)共同资助
详细信息
    作者简介:
    • 赵洋 男, 2002年4月出生于辽宁省辽阳市, 国防科技大学空天科学学院硕士研究生, 主要研究方向为陶瓷纤维与先驱体及其应用. E-mail: 861165623@qq.com
    通讯作者:
    • 韩成 男, 1991年7月出生于安徽省阜阳市, 现为国防科技大学空天科学学院副研究员, 硕士生导师, 主要研究方向为新型陶瓷纤维、先进复合材料等. E-mail: hancheng@nudt.edu.cn
  • 中图分类号: V11, V45

High Performance Fibers-based Space Structure and Manufacturing Materials

  • 摘要: 高性能纤维具有质量轻、强度高、化学稳定性好以及便于结构制造等显著特点, 在空间领域具有重要应用. 其在空间可展开结构中, 凭借低密度与高强度减轻了结构重量、提升了运载效率, 且兼具良好柔韧性与稳定性, 可保障结构在轨可靠运行; 在空间碎片防护结构中, 依靠优异的力学性能与抗冲击能力, 保障航天器在轨安全; 在柔性捕获网方面, 其高强度与韧性确保了捕获操作的可靠安全, 助力轨道资源维护. 随着月壤研究的深入, 其在月壤材料原位制造中展现出潜在应用价值. 结合嫦娥六号月壤最新研究成果, 探讨了月壤纤维制造技术和月球基地建造材料的发展方向. 深入研究高性能纤维在空间领域的应用, 将为空间结构设计制造提供新的思路和方法, 实现空间资源高效利用.

     

  • 图  1  (a)嫦娥六号在月球展开的由玄武岩纤维制成的五星红旗, (b)玄武岩光学照片, (c)玄武岩纤维制备技术路线, (d)玄武岩纤维的微观结构

    Figure  1.  (a) Five-Starred Red Flag made by basalt fiber in Chang’E-6 mission, (b) photograph of basalt, (c) preparation of basalt fibers, (d) microstructure of basalt fibers

    图  2  空间可展开结构的典型应用

    Figure  2.  Spatial applications of composite deployable structures

    图  3  热响应型形状记忆聚合物基复合材料的纤维增强效应

    Figure  3.  Fiber reinforcement effects in thermally responsive shape memory polymer matrix composites

    图  4  航天器空间碎片典型损伤. (a) STS-7任务期间微流星体在挑战者号航天飞机前窗表面留下的陨石坑, (b) 航天飞机奋进号散热器在STS-118期间表面损坏, (c) 哈勃空间望远镜太阳能阵列的穿透前视图, (d) SMM航天器体损伤

    Figure  4.  Typical spacecraft damages causing by space debris. (a) The crater left by a micrometeoroid on the surface of the front window of the Space Shuttle Challenger during the STS-7 mission, (b) Space Shuttle Endeavour radiator surface damage during STS-118, (c) penetrating front view of the Hubble Space Telescope solar array, (d) SMM (Solar Maximum Mission) spacecraft body damage

    图  5  国际空间站采用的Nextel/Kevlar纤维填充式空间碎片防护结构

    Figure  5.  Nextel/Kevlar enhanced Whipple shield configurations on ISS

    图  6  ROGER空间绳网捕获任务(a)与空间捕获系统工作过程(b)

    Figure  6.  ROGER with net capture mission (a), and space capture system working process (b)

    图  7  嫦娥六号带回的代表性样本. (a) 从嫦娥六号采集的样品中筛选出的部分直径超过1 mm的岩石碎片, (b)~(e) 不同结构特征的玄武岩碎片, (f)(g) 角砾岩, (h) 黏结岩的背散射电子图像, (i)(j) 典型的玄武岩, (k) 黏结岩, (l) 浅色岩石碎片, (m)(n) 玻璃质材料的显微照片

    Figure  7.  Typical images of Chang’E-6 returned samples. (a) Fragments larger than 1 mm, (b)~(e) basaltic fragments with different structural characteristics, (f)(g) breccia, (h) binder rock backscatter images, (i)(j) typical basalts, (k) bonding rocks, (l) light-colored cuttings, (m)(n) glassy materials

    图  8  月球基地建筑3D打印制造

    Figure  8.  Lunar dwelling building by 3D printing

    图  9  利用月壤制备纤维并将所得材料用于月球基地建设的方案

    Figure  9.  Preparation of lunar soil fibers for the construction of lunar bases

    图  10  粉末原料直接构筑纤维材料

    Figure  10.  Fibration of powder materials

    表  1  常用高性能纤维性能比较

    Table  1.   Performance comparison of common high performance fibers

    材料类型 断裂强度/GPa 模量/GPa 断裂伸长率/(%) 线密度/(g·m–1) 使用温度/℃ 抗辐照性
    PI 3.0~3.5 120~140 2 1.41 200~300 优良
    PBO 58 180 3.5 1.54~1.56 300 一般
    UHMw-PE 3.2 99 3.7 0.97 <80 优良
    聚芳酯纤维 2.6~3.0 72~85 2~5 1.41 250 一般
    碳纤维 3~7.0 230~600 1~2 1.76~1.82 600 优良
    玄武岩纤维 3~4.84 91~110 2~3.2 2.65~3.05 700 优良
    Kevlar29 2.76 63 4 1.44 250
    Kevlar49 3.5 124 2.4 1.44 250
    芳纶Ⅲ 4.2~5.0 130~155 3.2~4.1 1.43~1.45 270
    下载: 导出CSV
  • [1] 嫦娥六号完成采样上升器从月背起飞进入预定环月轨道[N/OL](2024-06-04). https://www.cnsa.gov.cn/n6758823/n6758838/c10543020/content.html

    Chang 6 complete sampling ascenders from month back into the rings on take-off track (2024-06-04) [N/OL]. https://www.cnsa.gov.cn/n6758823/n6758838/c10543020/content.html
    [2] LI, GUO, FU F, et al. Triboelectric basalt textiles efficiently operating within an ultrawide temperature range[J]. Advanced Materials, 2024, 36(28): 2401359 doi: 10.1002/adma.202401359
    [3] LI, HU H, YANG, et al. Nature of the lunar far-side samples returned by the Chang’E-6 mission[J]. National Science Review, 2024, 11(11): nwae328 doi: 10.1093/nsr/nwae328
    [4] 马鹏程, 郭泽世, 苏秀中, 等. 月壤纤维材料研究进展与展望[J]. 深空探测学报, 2023, 10(5): 532-543

    MA Pengcheng, GUO Zeshi, SU Xiuzhong, et al. Progress and perspect of lunar fiber materials[J]. Journal of Deep Space Exploration, 2023, 10(5): 532-543
    [5] 邢丹, 葸雄宇, 郭泽世, 等. 模拟月壤制备连续纤维的可行性研究[J]. 中国科学: 技术科学, 2020, 50(12): 1625-1633

    XING Dan, XI Xiongyu, GUO Zeshi, et al. Study on the feasibility of preparing a continuous fibre using lunar soil simulant[J]. Science in China: Technical Sciences, 2020, 50(12): 1625-1633
    [6] MA X F, LI T J, MA J Y, et al. Recent advances in space-deployable structures in China[J]. Engineering, 2022, 17(10): 207-219
    [7] WANG B, ZHU J C, ZHONG S C, et al. Space deployable mechanics: a review of structures and smart driving[J]. Materials :Times New Roman;">& Design, 2024, 237: 112557
    [8] MA X F, AN N, CONG Q, et al. Design, modeling, and manufacturing of high strain composites for space deployable structures[J]. Communications Engineering, 2024, 3(1): 78 doi: 10.1038/s44172-024-00223-2
    [9] 冷劲松, 兰鑫, 刘彦菊, 等. 形状记忆聚合物复合材料及其在空间可展开结构中的应用[J]. 宇航学报, 2010, 31(4): 950-956 doi: 10.3873/j.issn.1000-1328.2010.04.002

    LENG Jinsong, LAN Xin, LIU Yanju, et al. Shape memory polymer composites and their applications in space deployable structures[J]. Journal of Astronautics, 2010, 31(4): 950-956 doi: 10.3873/j.issn.1000-1328.2010.04.002
    [10] 贾文文, 濮海玲, 刘颖, 等. 刚性基体高应变复合材料在空间可展结构中的应用及发展[J]. 宇航材料工艺, 2023, 53(2): 14-21 doi: 10.12044/j.issn.1007-2330.2023.02.003

    JIA Wenwen, PU Hailing, LIU Ying, et al. Application and development of stiff matrix high strain composites in deployable space structures[J]. Aerospace Materials :Times New Roman;">& Technology, 2023, 53(2): 14-21 doi: 10.12044/j.issn.1007-2330.2023.02.003
    [11] SVOTINA V V. Spacecraft protection against man-made and natural space debris particles[J]. Acta Astronautica, 2024, 225: 538-555 doi: 10.1016/j.actaastro.2024.09.053
    [12] CHEN Y, TANG Q Y, HE Q G, et al. Review on hypervelocity impact of advanced space debris protection shields[J]. Thin-Walled Structures, 2024, 200: 111874 doi: 10.1016/j.tws.2024.111874
    [13] Christiansen E L, Kerr J H. Flexible and deployable meteoroid/debris shielding for spacecraft[J]. International Journal of Impact Engineering, 1999, 23(1): 125-136 doi: 10.1016/S0734-743X(99)00068-8
    [14] PAI A, DIVAKARAN R, ANAND S, et al. Advances in the Whipple shield design and development: a brief review[J]. Journal of Dynamic Behavior of Materials, 2022, 8(1): 20-38 doi: 10.1007/s40870-021-00314-7
    [15] 韩增尧, 庞宝君. 空间碎片防护研究最新进展[J]. 航天器环境工程, 2012, 29(4): 369-378 doi: 10.3969/j.issn.1673-1379.2012.04.004

    HAN Zengyao, PANG Baojun. Review of recent development of space debris protection research[J]. Spacecraft Environment Engineering, 2012, 29(4): 369-378 doi: 10.3969/j.issn.1673-1379.2012.04.004
    [16] 苟海涛, 王应德, 闫军, 等. 一种高性能复合织物填充防护结构撞击极限研究和防护机理分析[C]//武汉: 中国空间科学学会空间材料专业委员会, 2012

    GOU Haitao, WANG Yingde, YAN Jun, et al. Experimental study of hypervelocity impact on an advanced composite Fibric stuffed Whipple shield[C]//Wuhan: the Space Materials Committee, Chinese Society of Space Research, 2012
    [17] WU N, LIU S K, ZHANG X S, et al. Progress on space materials science in China: debris shielding fibrous materials and high specific energy lithium sulfur batteries[J]. Chinese Journal of Space Science, 2022, 42(4): 803-811 doi: 10.11728/cjss2022.04.yg24
    [18] BAI Y X, YUE H J, WANG J, et al. Super-durable ultralong carbon nanotubes[J]. Science, 2020, 369(6507): 1104-1106 doi: 10.1126/science.aay5220
    [19] ZHANG X S, LEI X D, JIA X Z, et al. Carbon nanotube fibers with dynamic strength up to 14 GPa[J]. Science, 2024, 384(6702): 1318-1323 doi: 10.1126/science.adj1082
    [20] SHAN M H, GUO J, GILL E. Review and comparison of active space debris capturing and removal methods[J]. Progress in Aerospace Science, 2016, 80: 18-32 doi: 10.1016/j.paerosci.2015.11.001
    [21] SVOTINA V V. Spacecraft protection against man-made and natural space debris particles[J]. Acta Astronautica, 2024, 225: 538-555 doi: 10.1016/j.actaastro.2024.09.053
    [22] JOHNSON N L. Debris removal: an opportunity for cooperative research[C]//Proceedings of Space Situational Awareness Conference. Washington: NASA, 2007
    [23] TANG C, DENG Y Q, BAI Z F, et al. Dynamics analysis of space netted pocket system capturing non-cooperative target[J]. Applied Sciences, 2023, 13(18): 10377 doi: 10.3390/app131810377
    [24] BISCHOF B, KERSTEIN L, STARKE J, et al. ROGER-robotic geostationary orbit restorer[C]//54th International Astronautical Congress of the International Astronautical Federation, the International Academy of Astronautics, and the International Institute of Space Law. Bremen, Germany: IAC, 2003
    [25] FORSHAW J L, AGLIETTI G S, FELLOWES S, et al. The active space debris removal mission RemoveDebris. Part 1: from concept to launch[J]. Acta Astronautica, 2020, 168: 293-309 doi: 10.1016/j.actaastro.2019.09.002
    [26] AGLIETTI G S, TAYLOR B, FELLOWES S, et al. The active space debris removal mission RemoveDebris. Part 2: in orbit operations[J]. Acta Astronautica, 2020, 168: 310-322 doi: 10.1016/j.actaastro.2019.09.001
    [27] 许望晶, 王立武, 唐明章, 等. 空间抓捕系统绳网的设计与研制[J]. 航天器工程, 2021, 30(2): 54-59 doi: 10.3969/j.issn.1673-8748.2021.02.008

    XU Wangjing, WANG Liwu, TANG Mingzhang, et al. Design and development of space net for capture system[J]. Spacecraft Engineering, 2021, 30(2): 54-59 doi: 10.3969/j.issn.1673-8748.2021.02.008
    [28] BENVENUTO R, CARTA R. Active debris removal system based on tethered-nets: experimental results[C]//9th Pegasus-AIAA Aerospace Student Conference. Milano, Italy: AIAA, 2013
    [29] 姜生元, 沈毅, 吴湘, 等. 月面广义资源探测及其原位利用技术构想[J]. 深空探测学报, 2015, 2(4): 291-301

    JIANG Shengyuan, SHEN Yi, WU Xiang, et al. Technical schemes of investigation and in-situ utilization for lunar surface generalized resources[J]. Journal of Deep Space Exploration, 2015, 2(4): 291-301
    [30] 刘琛, 李勇, 周文, 等. 模拟月/火星壤的原位成型技术研究进展[J]. 材料导报, 2022, 36(22): 22050122 doi: 10.11896/cldb.22050122

    LIU C, LI Y, ZHOU W, et al. In-situ forming technology of lunar/martian soil simulant[J]. Materials Reports, 2022, 36(22): 22050122 doi: 10.11896/cldb.22050122
    [31] ZHAO H, MENG L, LI S Y, et al. Development of lunar regolith composite and structure via laser-assisted sintering[J]. Frontiers of Mechanical Engineering, 2022, 17(1): 6-18 doi: 10.1007/s11465-021-0662-2
    [32] LEACH N. 3D printing in space[J]. Architectural Design, 2014, 84: 108-113
    [33] GHIDINI T, GRASSO M, GUMPINGER J, et al. Additive manufacturing in the new space economy: current achievements and future perspectives[J]. Progress in Aerospace Sciences, 2023, 142: 100959 doi: 10.1016/j.paerosci.2023.100959
    [34] ZHOU C, GAO Y Y, ZHOU Y, et al. Properties and characteristics of regolith-based materials for extraterrestrial construction[J]. Engineering, 2024, 37(6): 159-181
    [35] 吴灵芝, 尹海清, 张聪, 等. 增材制造月壤原位成形技术的研究现状[J]. 矿产综合利用, 2023(6): 99-107 doi: 10.3969/j.issn.1000-6532.2023.06.015

    WU Lingzhi, YIN Haiqing, ZHANG Cong, et al. Research status of additive manufacturing lunar in-situ forming technology[J]. Multipurpose Utilization of Mineral Resources, 2023(6): 99-107 doi: 10.3969/j.issn.1000-6532.2023.06.015
    [36] LIU M, TANG W Z, DUAN W Y, et al. Digital light processing of lunar regolith structures with high mechanical properties[J]. Ceramics International, 2019, 45(5): 5829-5836 doi: 10.1016/j.ceramint.2018.12.049
    [37] GOULAS A, FRIEL R J. 3D printing with moondust[J]. Rapid Prototyping Journal, 2016, 22(6): 864-870 doi: 10.1108/RPJ-02-2015-0022
    [38] GOULAS A, BINNER J G P, HARRIS R A, et al. Assessing extraterrestrial regolith material simulants for in-situ resource utilisation based 3D printing[J]. Applied Materials Today, 2017, 6: 54-61 doi: 10.1016/j.apmt.2016.11.004
    [39] 李雯, 徐可宁, 黄勇, 等. 基于SLM的模拟月壤原位成形技术[J]. 北京航空航天大学学报, 2019, 45(10): 1931-1937

    LI Wen, XU Kening, HUANG Yong, et al. In-situ forming of lunar regolith simulant via selective laser melting[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(10): 1931-1937
    [40] MONALDO E, NERILLI F, VAIRO G. Basalt-based fiber-reinforced materials and structural applications in civil engineering[J]. Composite Structures, 2019, 214: 246-263 doi: 10.1016/j.compstruct.2019.02.002
    [41] GUO Z S, XING D, XI X Y, et al. Production of Fibres from lunar soil: feasibility, applicability and future perspectives[J]. Advanced Fiber Materials, 2022, 4(5): 923-937 doi: 10.1007/s42765-022-00156-5
    [42] HO D, SOBON L E. Extraterrestrial Fiberglass Production Using Solar Energy[R]. NASA, 1979: 225-232
    [43] WANG H W, ZENG C, WANG C, et al. Fibration of powdery materials[J]. Nature Materials, 2024, 23(5): 596-603 doi: 10.1038/s41563-024-01821-3
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  342
  • HTML全文浏览量:  81
  • PDF下载量:  29
  • 被引次数: 

    0(来源:Crossref)

    0(来源:其他)

出版历程
  • 收稿日期:  2024-11-01
  • 修回日期:  2025-01-02
  • 网络出版日期:  2025-02-12

目录

    /

    返回文章
    返回