留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

星载旋转部件间激光通信光传输装置设计与试验

谭嘉恒 永强 徐伟

谭嘉恒, 永强, 徐伟. 星载旋转部件间激光通信光传输装置设计与试验[J]. 空间科学学报, 2025, 45(2): 629-640. doi: 10.11728/cjss2025.02.2024-0160
引用本文: 谭嘉恒, 永强, 徐伟. 星载旋转部件间激光通信光传输装置设计与试验[J]. 空间科学学报, 2025, 45(2): 629-640. doi: 10.11728/cjss2025.02.2024-0160
TAN Jiaheng, YONG Qiang, XU Wei. Design and Experiment of Optical Transmission Device for Laser Communication between Rotating Components on Satellite (in Chinese). Chinese Journal of Space Science, 2025, 45(2): 629-640 doi: 10.11728/cjss2025.02.2024-0160
Citation: TAN Jiaheng, YONG Qiang, XU Wei. Design and Experiment of Optical Transmission Device for Laser Communication between Rotating Components on Satellite (in Chinese). Chinese Journal of Space Science, 2025, 45(2): 629-640 doi: 10.11728/cjss2025.02.2024-0160

星载旋转部件间激光通信光传输装置设计与试验

doi: 10.11728/cjss2025.02.2024-0160 cstr: 32142.14.cjss.2024-0160
基金项目: XX载荷建模仿真与优化设计项目资助(2023-JCJQ-JJ-0467)
详细信息
    作者简介:
    • 谭嘉恒 男, 2000年9月出生于湖北省武汉市, 现于中国科学院大学(中国科学院长春光学精密机械与物理研究所)攻读博士学位, 主要研究方向为空间遥感器结构与机构. E-mail: tanjiaheng22@mails.ucas.ac.cn
    通讯作者:
    • 永强 男, 1995年出生于内蒙古通辽市, 现为中国科学院长春光学精密机械与物理研究所助理研究员, 主要从事航天器结构与机构, 航天器热控方向的研究工作. E-mail: yongqiang0220@126.com
  • 中图分类号: V19

Design and Experiment of Optical Transmission Device for Laser Communication between Rotating Components on Satellite

  • 摘要: 针对旋转成像的超大幅宽空间相机与卫星平台间进行大容量、高可靠数据传输的需求, 设计了一套采用激光通信的空间光传输装置, 对高精度光学检测及装调方案进行了研究. 通过在发射端和接收端各安装主份和备份两套准直器的方法提高装置的可靠性, 并设计多光路通道实现了两套准直器的相互备份. 同时, 提出了一个高精度装调方案完成了对准直器光轴的精确测量及装调. 利用有限元分析软件MSC.PATRAN对空间光传输装置进行模态分析, 并对装调完成的空间光传输装置进行了振动试验. 结果表明, 空间光传输装置发射端和接收端的一阶频率分别为264.25 Hz和434.35 Hz, 振动试验后收发准直器间最大光功率损耗为1.94 dB, 各基准面法线的空间角变化均在5″ 以内. 说明该空间光传输装置能够克服卫星发射时的复杂力学环境影响, 具有较高的装调精度和可靠性, 可以满足星载旋转部件间激光通信数据传输的要求.

     

  • 图  1  空间光传输装置与卫星安装位置

    Figure  1.  Position of the space optical transmission device on the satellite

    图  2  空间光传输装置系统原理

    Figure  2.  Principles of the space optical transmission device system

    图  3  切换机构传动原理

    Figure  3.  Transmission principles of the switching mechanism

    图  4  装调方案流程

    Figure  4.  Flow chart of the alignment procedure

    图  5  45°反射镜角度偏差测量原理

    Figure  5.  Measurement principles of 45° reflector angular deviation

    图  6  利用光纤环形器测准直器光轴的工作原理

    Figure  6.  Working principle of using fiber optic circulator to measure the collimator optical axis

    图  7  发射端内部装调误差

    Figure  7.  Internal alignment error of the transmitter

    图  8  发射端主备份准直器径向位置偏移测量过程

    Figure  8.  Radial position offset measurement process of the primary and backup collimators at the transmitter

    图  9  发射端和接收端与旋转关节的装调误差

    Figure  9.  Alignment errors of the transmitter and receiver with the rotating joint

    图  10  发射端前四阶模态振型. (a)一阶, (b)二阶, (c)三阶, (d)四阶

    Figure  10.  The first 4 order mode shapes of the transmitter. (a) 1st order, (b) 2nd order, (c) 3rd order, (d) 4th order

    图  11  接收端前四阶模态振型. (a)一阶, (b)二阶, (c)三阶, (d)四阶

    Figure  11.  The first 4 order mode shapes of the receiver. (a) 1st order, (b) 2nd order, (c) 3rd order, (d) 4th order

    图  12  空间光传输装置振动试验

    Figure  12.  Vibration test of the space optical transmission device

    表  1  空间光传输装置多光路通道组成

    Table  1.   Multiple optical channel composition of the space optical transmission device

    Channel modeTransmitter working collimatorReceiver working collimator
    1Primary collimatorPrimary collimator
    2Backup collimatorPrimary collimator
    3Primary collimatorBackup collimator
    4Backup collimatorBackup collimator
    下载: 导出CSV

    表  2  蜗轮蜗杆主要参数

    Table  2.   Main parameters of the worm gears

    Object Parameter Object Parameter
    Modulus 1 Number of threads of worm 1
    Reference circle diameter of worm 18 mm Lead angle 3.17983°
    Reference circle diameter of worm gear 40 mm Pressure angle 20°
    下载: 导出CSV

    表  3  各组件材料参数

    Table  3.   Material parameters of each components

    Component name Material name Density/(kg·m–3) Poisson ratio Elastic modulus/MPa
    Transmitter and receiver fixed bracket TC4 4440 0.34 106820
    Linear guideway, lead screw 9 Cr18 7700 0.3 196000
    Worm gear QSn4-3 8800 0.3 98686
    Worm 40 Cr 7820 0.277 206780
    下载: 导出CSV

    表  4  发射端和接收端前四阶模态频率

    Table  4.   The first 4 order modal frequencies of the transmitter and receiver

    OrderTransmitter frequency/HzReceiver frequency/Hz
    1274.57402.84
    2276.54441.48
    3459.38459.02
    4476.74568.43
    下载: 导出CSV

    表  5  振动试验结果

    Table  5.   Vibration test results

    Position Direction Fundamental
    frequency/Hz
    Sinusoidal vibration Random vibration
    Control
    amplitude/g
    Response
    amplitude/g
    Control RMS/g Response RMS/g
    Transmitter
    system
    x 517.94 6 8.2 7.3 14.5
    y 264.25 6 8.4 7.3 10.5
    z 271.88 6 8.4 7.2 11.3
    Receiver
    system
    x 1939.01 6 8.4 7.3 14.1
    y 434.35 6 7.9 7.3 11.9
    z 455.07 6 8.0 7.2 11.9
      g为重力加速度.
    下载: 导出CSV

    表  6  激光器发射功率11 dBm下振动试验前后各工作模式光功率损耗

    Table  6.   Optical power penalty in each operating mode before and after vibration test at 11 dBm laser emission power

    Channel modeBefore vibration testAfter vibration test
    Optical power range during one full rotation/dBmMaximum loss /dBOptical power range during one full rotation/dBmMaximum loss /dB
    110.07~10.250.939.80~10.051.20
    29.70~10.001.309.41~9.761.59
    39.70~10.011.309.38~10.071.62
    49.50~9.801.509.06~9.741.94
    下载: 导出CSV

    表  7  振动试验前后标定数据变化

    Table  7.   Changes in calibration data before and after vibration test

    Measurement objects Calibration data Theodolite readings Change before and after vibration
    Direction y z Δy Δz
    Transmitter reference prism Before vibration $89^\circ 59'58''$ $89^\circ 59'59''$ $3''$ $2''$
    After vibration $90^\circ 00'01''$ $90^\circ 00'01''$
    Receiver reference prism Before vibration $89^\circ 59'57''$ $90^\circ 00'03''$ $3''$ $4''$
    After vibration $90^\circ 00'00''$ $90^\circ 00'07''$
    下载: 导出CSV
  • [1] BAI Z F, MENG J C, SU Y L, et al. On-orbit demonstration of inter-satellite free-space optical stable communication enabled by integrated optical amplification of HPA and LNA[J]. Applied Optics, 2023, 62(23): G18-G25 doi: 10.1364/AO.484983
    [2] KIRRBACH R, FAULWASSER M, SCHNEIDER T, et al. Monolitic hybrid transmitter-receiver lens for rotary on-axis communications[J]. Applied Sciences, 2020, 10(4): 1540 doi: 10.3390/app10041540
    [3] LI M, GUO Y, WANG X, et al. Researching pointing error effect on laser linewidth tolerance in space coherent optical communication systems[J]. Optics Express, 2022, 30(4): 5769-5787 doi: 10.1364/OE.447408
    [4] 杨成武, 谌明, 刘向南, 等. 小卫星激光通信终端技术现状与发展趋势[J]. 遥测遥控, 2021, 42(3): 1-7

    YANG Chengwu, CHEN Ming, LIU Xiangnan, et al. Current status and development trends of minisatellite laser communication terminal technology[J]. Journal of Telemetry, Tracking and Command, 2021, 42(3): 1-7
    [5] WU L, GAO Z R, ZHU Z J, et al. Design of dynamic testing device for watertight opto-electrical rotary joint[C]//Proceedings of 2021 IEEE International Conference on Computer Science, Electronic Information Engineering and Intelligent Control Technology. Fuzhou: IEEE, 2021: 733-736
    [6] 张群, 钱建国, 刘一. 一种光纤旋转连接器的设计改进[J]. 现代雷达, 2020, 42(2): 80-84

    ZHANG Qun, QIAN Jianguo, LIU Yi. Design improvement of fiber optic rotary joint[J]. Modern Radar, 2020, 42(2): 80-84
    [7] LI D Q, MAO Z Y, SUN L J, et al. Analysis of coaxiality error induced by the cube corner retro-reflector geometrical and assembly errors of an acquisition, pointing, and tracking system[J]. Photonics, 2023, 10(10): 1176 doi: 10.3390/photonics10101176
    [8] 赖小皇, 于兵, 马晓东. 基于激光的航空发动机转子部件参数非接触传输系统[J]. 电子器件, 2016, 39(5): 1224-1231 doi: 10.3969/j.issn.1005-9490.2016.05.040

    LAI Xiaohuang, YU Bing, MA Xiaodong. Non-contact parameters transmission system for rotor parts of aero engine based on wireless laser[J]. Chinese Journal of Electron Devices, 2016, 39(5): 1224-1231 doi: 10.3969/j.issn.1005-9490.2016.05.040
    [9] 谭雯, 沈三民, 谭秋林, 等. 一种用于旋转环境的无线激光数据传输模块设计[J]. 电子器件, 2021, 44(3): 525-529 doi: 10.3969/j.issn.1005-9490.2021.03.003

    TAN Wen, SHEN Sanmin, TAN Qiulin, et al. Wireless laser data transmission module for rotating environment[J]. Chinese Journal of Electron Devices, 2021, 44(3): 525-529 doi: 10.3969/j.issn.1005-9490.2021.03.003
    [10] 白杨杨, 陈力兵, 孟立新, 等. 库德式激光通信终端粗跟踪技术[J]. 兵工学报, 2021, 42(9): 1931-1939 doi: 10.3969/j.issn.1000-1093.2021.09.014

    BAI Yangyang, CHEN Libing, MENG Lixin, et al. Coarse tracking technology of coude-type laser communication terminal[J]. Acta Armamentarii, 2021, 42(9): 1931-1939 doi: 10.3969/j.issn.1000-1093.2021.09.014
    [11] LEE J, RHEE H G, SON E S, et al. Optimal design of a coudé mirror assembly for a 1-m class ground telescope[J]. Current Optics and Photonics, 2023, 7(4): 435-442
    [12] 黄龙, 张文会. 潜望式激光通信瞄准机构误差计算[J]. 中国光学, 2015, 8(5): 840-846 doi: 10.3788/co.20150805.0840

    HUANG Long, ZHANG Wenhui. Error calculation of periscope pointing assembly for laser communication[J]. Chinese Optics, 2015, 8(5): 840-846 doi: 10.3788/co.20150805.0840
    [13] HE Q, ZHAO Z G, YE X D, et al. Optical coupling efficiency of a coupler with double-combined collimating lenses and thermally expanded core fibers[J]. Micromachines, 2022, 13(2): 324 doi: 10.3390/mi13020324
    [14] REN W J, SUN J F, CONG H S, et al. Sensitivity deterioration of free-space optical coherent/non-coherent OOK modulation receiver by ambient light noise[J]. Sensors, 2023, 23(4): 2140 doi: 10.3390/s23042140
    [15] 吴从均, 颜昌翔, 高志良. 空间激光通信发展概述[J]. 中国光学, 2013, 6(5): 670-680

    WU Congjun, YAN Changxiang, GAO Zhiliang. Overview of space laser communications[J]. Chinese Optics, 2013, 6(5): 670-680
    [16] JING W C, JIA D G, TANG F, et al. Design and implementation of a broadband optical rotary joint using C-lenses[J]. Optics Express, 2004, 12(17): 4088-4093 doi: 10.1364/OPEX.12.004088
    [17] ZHAO Z G, DUAN S F, XU X P, et al. Bidirectional transmission of a collimator with double-combined collimating lenses and thermally expanded core fibers[J]. Review of Scientific Instruments, 2023, 94(3): 035105 doi: 10.1063/5.0131037
    [18] MI L, YAO S L, SUN C D, et al. A single-channel fiber optic rotary joint on the basis of TEC fiber collimators[C]//Proceedings of the 9th International Conference on Optical Communications and Networks. Nanjing: IET, 2010: 437-440
    [19] ZHAO Z G, CAO F S, WANG S F, et al. Study on optical coupling characteristics of a high-radial-tolerance thick-lens beam expanding fiber collimator[J]. Infrared Physics :Times New Roman;">& Technology, 2023, 133: 104846
    [20] 张健, 王健飞, 方新, 等. 航空遥感器平面反射镜系统装调方法[J]. 中国光学, 2022, 15(3): 534-544 doi: 10.37188/CO.2021-0187

    ZHANG Jian, WANG Jianfei, FANG Xin, et al. Alignment method of plane reflecting mirror system for aerial remote sensor[J]. Chinese Optics, 2022, 15(3): 534-544 doi: 10.37188/CO.2021-0187
    [21] 杨振, 李广云, 贺磊. 光学准直测量方法与精度分析[J]. 红外与激光工程, 2011, 40(2): 282-286 doi: 10.3969/j.issn.1007-2276.2011.02.022

    YANG Zhen, LI Guangyun, HE Lei. Measurement methods and precision analysis of optical collimation[J]. Infrared and Laser Engineering, 2011, 40(2): 282-286 doi: 10.3969/j.issn.1007-2276.2011.02.022
  • 加载中
图(12) / 表(7)
计量
  • 文章访问数:  634
  • HTML全文浏览量:  230
  • PDF下载量:  21
  • 被引次数: 

    0(来源:Crossref)

    0(来源:其他)

出版历程
  • 收稿日期:  2024-11-13
  • 修回日期:  2024-12-29
  • 网络出版日期:  2025-02-20

目录

    /

    返回文章
    返回