Design and Experiment of Optical Transmission Device for Laser Communication between Rotating Components on Satellite
-
摘要: 针对旋转成像的超大幅宽空间相机与卫星平台间进行大容量、高可靠数据传输的需求, 设计了一套采用激光通信的空间光传输装置, 对高精度光学检测及装调方案进行了研究. 通过在发射端和接收端各安装主份和备份两套准直器的方法提高装置的可靠性, 并设计多光路通道实现了两套准直器的相互备份. 同时, 提出了一个高精度装调方案完成了对准直器光轴的精确测量及装调. 利用有限元分析软件MSC.PATRAN对空间光传输装置进行模态分析, 并对装调完成的空间光传输装置进行了振动试验. 结果表明, 空间光传输装置发射端和接收端的一阶频率分别为264.25 Hz和434.35 Hz, 振动试验后收发准直器间最大光功率损耗为1.94 dB, 各基准面法线的空间角变化均在5″ 以内. 说明该空间光传输装置能够克服卫星发射时的复杂力学环境影响, 具有较高的装调精度和可靠性, 可以满足星载旋转部件间激光通信数据传输的要求.Abstract: Aiming to address the demand for high-capacity and high-reliability data transmission between a rotating imaging ultra-wide-field space camera and the satellite platform, a space optical transmission device based on laser communication was designed, and the high-precision optical testing and alignment scheme was studied. The device’s reliability was enhanced by installing the primary and backup collimators at both the transmitter and the receiver, with mutual backup achieved through the design of multiple optical channels. At the same time, a high-precision alignment scheme to ensure accurate measurement and alignment of the collimator’s optical axis was proposed. Finally, the modal analysis of the space optical transmission device was carried out by using the finite element analysis software MSC.PATRAN and the vibration test of the installed space optical transmission device was completed. The results show that the first-order frequency of the transmitter of the space optical transmission device is 264.25 Hz, and the first-order frequency of the receiver is 434.35 Hz. After the vibration test, the maximum optical power penalty between the transceiver collimator is 1.94 dB, and the spatial angle change of each prism reference surface normal is within 5". It shows that the space optical transmission device can overcome the influence of a complex mechanical environment during the satellite launch, has high alignment precision and reliability, and meets the requirements of laser communication data transmission between satellite-borne rotating components.
-
表 1 空间光传输装置多光路通道组成
Table 1. Multiple optical channel composition of the space optical transmission device
Channel mode Transmitter working collimator Receiver working collimator 1 Primary collimator Primary collimator 2 Backup collimator Primary collimator 3 Primary collimator Backup collimator 4 Backup collimator Backup collimator 表 2 蜗轮蜗杆主要参数
Table 2. Main parameters of the worm gears
Object Parameter Object Parameter Modulus 1 Number of threads of worm 1 Reference circle diameter of worm 18 mm Lead angle 3.17983° Reference circle diameter of worm gear 40 mm Pressure angle 20° 表 3 各组件材料参数
Table 3. Material parameters of each components
Component name Material name Density/(kg·m–3) Poisson ratio Elastic modulus/MPa Transmitter and receiver fixed bracket TC4 4440 0.34 106820 Linear guideway, lead screw 9 Cr18 7700 0.3 196000 Worm gear QSn4-3 8800 0.3 98686 Worm 40 Cr 7820 0.277 206780 表 4 发射端和接收端前四阶模态频率
Table 4. The first 4 order modal frequencies of the transmitter and receiver
Order Transmitter frequency/Hz Receiver frequency/Hz 1 274.57 402.84 2 276.54 441.48 3 459.38 459.02 4 476.74 568.43 表 5 振动试验结果
Table 5. Vibration test results
Position Direction Fundamental
frequency/HzSinusoidal vibration Random vibration Control
amplitude/gResponse
amplitude/gControl RMS/g Response RMS/g Transmitter
systemx 517.94 6 8.2 7.3 14.5 y 264.25 6 8.4 7.3 10.5 z 271.88 6 8.4 7.2 11.3 Receiver
systemx 1939.01 6 8.4 7.3 14.1 y 434.35 6 7.9 7.3 11.9 z 455.07 6 8.0 7.2 11.9 注 g为重力加速度. 表 6 激光器发射功率11 dBm下振动试验前后各工作模式光功率损耗
Table 6. Optical power penalty in each operating mode before and after vibration test at 11 dBm laser emission power
Channel mode Before vibration test After vibration test Optical power range during one full rotation/dBm Maximum loss /dB Optical power range during one full rotation/dBm Maximum loss /dB 1 10.07~10.25 0.93 9.80~10.05 1.20 2 9.70~10.00 1.30 9.41~9.76 1.59 3 9.70~10.01 1.30 9.38~10.07 1.62 4 9.50~9.80 1.50 9.06~9.74 1.94 表 7 振动试验前后标定数据变化
Table 7. Changes in calibration data before and after vibration test
Measurement objects Calibration data Theodolite readings Change before and after vibration Direction y z Δy Δz Transmitter reference prism Before vibration $89^\circ 59'58''$ $89^\circ 59'59''$ $3''$ $2''$ After vibration $90^\circ 00'01''$ $90^\circ 00'01''$ Receiver reference prism Before vibration $89^\circ 59'57''$ $90^\circ 00'03''$ $3''$ $4''$ After vibration $90^\circ 00'00''$ $90^\circ 00'07''$ -
[1] BAI Z F, MENG J C, SU Y L, et al. On-orbit demonstration of inter-satellite free-space optical stable communication enabled by integrated optical amplification of HPA and LNA[J]. Applied Optics, 2023, 62(23): G18-G25 doi: 10.1364/AO.484983 [2] KIRRBACH R, FAULWASSER M, SCHNEIDER T, et al. Monolitic hybrid transmitter-receiver lens for rotary on-axis communications[J]. Applied Sciences, 2020, 10(4): 1540 doi: 10.3390/app10041540 [3] LI M, GUO Y, WANG X, et al. Researching pointing error effect on laser linewidth tolerance in space coherent optical communication systems[J]. Optics Express, 2022, 30(4): 5769-5787 doi: 10.1364/OE.447408 [4] 杨成武, 谌明, 刘向南, 等. 小卫星激光通信终端技术现状与发展趋势[J]. 遥测遥控, 2021, 42(3): 1-7YANG Chengwu, CHEN Ming, LIU Xiangnan, et al. Current status and development trends of minisatellite laser communication terminal technology[J]. Journal of Telemetry, Tracking and Command, 2021, 42(3): 1-7 [5] WU L, GAO Z R, ZHU Z J, et al. Design of dynamic testing device for watertight opto-electrical rotary joint[C]//Proceedings of 2021 IEEE International Conference on Computer Science, Electronic Information Engineering and Intelligent Control Technology. Fuzhou: IEEE, 2021: 733-736 [6] 张群, 钱建国, 刘一. 一种光纤旋转连接器的设计改进[J]. 现代雷达, 2020, 42(2): 80-84ZHANG Qun, QIAN Jianguo, LIU Yi. Design improvement of fiber optic rotary joint[J]. Modern Radar, 2020, 42(2): 80-84 [7] LI D Q, MAO Z Y, SUN L J, et al. Analysis of coaxiality error induced by the cube corner retro-reflector geometrical and assembly errors of an acquisition, pointing, and tracking system[J]. Photonics, 2023, 10(10): 1176 doi: 10.3390/photonics10101176 [8] 赖小皇, 于兵, 马晓东. 基于激光的航空发动机转子部件参数非接触传输系统[J]. 电子器件, 2016, 39(5): 1224-1231 doi: 10.3969/j.issn.1005-9490.2016.05.040LAI Xiaohuang, YU Bing, MA Xiaodong. Non-contact parameters transmission system for rotor parts of aero engine based on wireless laser[J]. Chinese Journal of Electron Devices, 2016, 39(5): 1224-1231 doi: 10.3969/j.issn.1005-9490.2016.05.040 [9] 谭雯, 沈三民, 谭秋林, 等. 一种用于旋转环境的无线激光数据传输模块设计[J]. 电子器件, 2021, 44(3): 525-529 doi: 10.3969/j.issn.1005-9490.2021.03.003TAN Wen, SHEN Sanmin, TAN Qiulin, et al. Wireless laser data transmission module for rotating environment[J]. Chinese Journal of Electron Devices, 2021, 44(3): 525-529 doi: 10.3969/j.issn.1005-9490.2021.03.003 [10] 白杨杨, 陈力兵, 孟立新, 等. 库德式激光通信终端粗跟踪技术[J]. 兵工学报, 2021, 42(9): 1931-1939 doi: 10.3969/j.issn.1000-1093.2021.09.014BAI Yangyang, CHEN Libing, MENG Lixin, et al. Coarse tracking technology of coude-type laser communication terminal[J]. Acta Armamentarii, 2021, 42(9): 1931-1939 doi: 10.3969/j.issn.1000-1093.2021.09.014 [11] LEE J, RHEE H G, SON E S, et al. Optimal design of a coudé mirror assembly for a 1-m class ground telescope[J]. Current Optics and Photonics, 2023, 7(4): 435-442 [12] 黄龙, 张文会. 潜望式激光通信瞄准机构误差计算[J]. 中国光学, 2015, 8(5): 840-846 doi: 10.3788/co.20150805.0840HUANG Long, ZHANG Wenhui. Error calculation of periscope pointing assembly for laser communication[J]. Chinese Optics, 2015, 8(5): 840-846 doi: 10.3788/co.20150805.0840 [13] HE Q, ZHAO Z G, YE X D, et al. Optical coupling efficiency of a coupler with double-combined collimating lenses and thermally expanded core fibers[J]. Micromachines, 2022, 13(2): 324 doi: 10.3390/mi13020324 [14] REN W J, SUN J F, CONG H S, et al. Sensitivity deterioration of free-space optical coherent/non-coherent OOK modulation receiver by ambient light noise[J]. Sensors, 2023, 23(4): 2140 doi: 10.3390/s23042140 [15] 吴从均, 颜昌翔, 高志良. 空间激光通信发展概述[J]. 中国光学, 2013, 6(5): 670-680WU Congjun, YAN Changxiang, GAO Zhiliang. Overview of space laser communications[J]. Chinese Optics, 2013, 6(5): 670-680 [16] JING W C, JIA D G, TANG F, et al. Design and implementation of a broadband optical rotary joint using C-lenses[J]. Optics Express, 2004, 12(17): 4088-4093 doi: 10.1364/OPEX.12.004088 [17] ZHAO Z G, DUAN S F, XU X P, et al. Bidirectional transmission of a collimator with double-combined collimating lenses and thermally expanded core fibers[J]. Review of Scientific Instruments, 2023, 94(3): 035105 doi: 10.1063/5.0131037 [18] MI L, YAO S L, SUN C D, et al. A single-channel fiber optic rotary joint on the basis of TEC fiber collimators[C]//Proceedings of the 9th International Conference on Optical Communications and Networks. Nanjing: IET, 2010: 437-440 [19] ZHAO Z G, CAO F S, WANG S F, et al. Study on optical coupling characteristics of a high-radial-tolerance thick-lens beam expanding fiber collimator[J]. Infrared Physics :Times New Roman;">& Technology, 2023, 133: 104846 [20] 张健, 王健飞, 方新, 等. 航空遥感器平面反射镜系统装调方法[J]. 中国光学, 2022, 15(3): 534-544 doi: 10.37188/CO.2021-0187ZHANG Jian, WANG Jianfei, FANG Xin, et al. Alignment method of plane reflecting mirror system for aerial remote sensor[J]. Chinese Optics, 2022, 15(3): 534-544 doi: 10.37188/CO.2021-0187 [21] 杨振, 李广云, 贺磊. 光学准直测量方法与精度分析[J]. 红外与激光工程, 2011, 40(2): 282-286 doi: 10.3969/j.issn.1007-2276.2011.02.022YANG Zhen, LI Guangyun, HE Lei. Measurement methods and precision analysis of optical collimation[J]. Infrared and Laser Engineering, 2011, 40(2): 282-286 doi: 10.3969/j.issn.1007-2276.2011.02.022 -
-
谭嘉恒 男, 2000年9月出生于湖北省武汉市, 现于中国科学院大学(中国科学院长春光学精密机械与物理研究所)攻读博士学位, 主要研究方向为空间遥感器结构与机构. E-mail:
下载: