Simulation Study of 1 bit Sigma-Delta Digital Fluxgate Magnetometer
-
摘要: 设计了一种基于1 bit Sigma-Delta调制技术的数字磁通门磁强计, 并利用Matlab Simulink工具对其进行仿真建模与分析, 获得了系统在噪声、线性度、动态响应速度以及频率响应等方面的性能参数. 在±1000 nT量程范围内, 该磁强计系统在1 Hz处的噪声为0.17 pT·Hz–1/2, 最大线性误差为1.04 pT, 动态响应速度为1.07×103 nT·s–1, 频率响应带宽超过30 Hz. 仿真结果证实, 采用1 bit Sigma-Delta调制技术显著提高了数模转换器(Digital-to-Analog Converter, DAC)的转换精度, 有效降低了数字磁强计系统的本底噪声和非线性误差, 显著提升了数字磁强计的性能. 基于1 bit Sigma-Delta调制技术的数字磁通门磁强计性能指标能够满足高精度磁场探测任务的要求, 为空间磁场探测领域提供了一种高精度、高可靠性的探测手段, 在深空探测及空间科学领域具有广泛的应用前景.
-
关键词:
- 数字磁通门磁强计 /
- 1 bit DAC /
- Sigma-Delta调制器 /
- Simulink工具
Abstract: A high-resolution digital fluxgate magnetometer is designed based on the 1 bit sigma-delta modulation technique with 24 bits measurement resolution. By using Matlab Simulink tool kits, the digital fluxgate magnetometer system was simulated and analyzed, the performance parameters of the system in terms of noise, linearity, dynamic response speed and frequency response are obtained. The simulation result shows that, in the range of ±1000 nT, the magnetometer system has a noise floor of 0.17 pT˙Hz–1/2 at 1 Hz, a maximum linearity error of 1.04 pT, a dynamic response speed of 1.07×103 nT˙s–1, and a -3 dB bandwidth of more than 30 Hz. The use of a 1 bit Sigma Delta modulator, significantly improves the conversion accuracy of the DAC (digital-to-analog converter), reduces the noise level and non-linearity of the magnetometer system, and significantly improves the overall performance of digital fluxgate magnetometer. This system is able to meet the requirements of long life, high precision and high reliability of space magnetic field exploration tasks, provides a high-precision and high-reliability detection means for the field of space magnetic field detection, showing its wide application prospects in the field of deep space exploration and space science.-
Key words:
- Digital fluxgate magnetometer /
- 1 bit DAC /
- Sigma Delta modulator /
- Simulink
-
表 1 数字磁强计的性能参数
Table 1. Performance parameters of digital magnetometer
探测任务 测量范围/nT 噪声/(nT·Hz–1/2) 分辨率/bit 采样率/Hz 风云三号05星 ±65000 0.01 24 50 SMILE ±64000/±12800 0.005 24 40 金星快车卫星 ±262/±524 0.01 20 1, 32, 128 THEMIS ±25000 0.01 20 128 MMS ±10500/±650 0.008/0.001 24 128 表 2 1 bit数字磁通门磁强计参数
Table 2. Parameters of modules in 1 bit digital fluxgate magnetometer
磁通门模块 参数 输入信号频率/Hz 10 输入信号量程/nT ±1000 1 bit ADC采样频率/MHz 1.024 相敏检波参考频率/kHz 20 积分器采样频率/MHz 1.024 Sigma-Delta调制器位数/bit 1 反馈模拟滤波器通带/Hz 5000 输出CIC降采样滤波器抽取率 8000 输出信号频率/Hz 128 表 3 不同量化位数的数字磁通门磁强计仿真系统性能对比
Table 3. Performance comparison of digital fluxgate magnetometer simulation systems with different quantization bits
仿真AD位数/bit 噪声功率谱密度/(Hz·pT–1·Hz–1/2) 线性度/% 动态响应速度/(nT·s–1) 频率响应(-3 dB带宽)/Hz 1 0.17 5.21×10–7 1.068×105 32.79 8 1.40 5.70×10–5 1.399×105 35.60 12 0.98 4.33×10–5 1.396×105 35.40 16 0.73 2.40×10–5 1.385×105 35.32 20 0.42 1.95×10–5 1.343×105 34.90 -
[1] 李磊, 王劲东, 周斌, 等. 磁通门磁强计在深空探测中的应用[J]. 深空探测学报, 2017, 4(6): 529-534LI Lei, WANG Jindong, ZHOU Bin, et al. Application of fluxgate magnetometer in deep space exploration[J]. Journal of Deep Space Exploration, 2017, 4(6): 529-534 [2] 陈武祥. 基于Sigma-Delta调制技术的高精度数字磁通门磁强计研究[D]. 北京: 中国科学院大学(中国科学院国家空间科学中心), 2022CHEN Wuxiang. Research on Precision Digital Fluxgate Magnetometer Based on Sigma-Delta Modulation Technology[D]. Beijing: National Space Science Center, Chinese Academy of Sciences, 2022 [3] 高双, 翟琳. 数字式磁通门磁强计设计[J]. 机电设备, 2011, 28(3): 27-29 doi: 10.3969/j.issn.1005-8354.2011.03.009GAO Shuang, ZHAI Lin. Design of digital fluxgate magnetometer[J]. Mechanical and Electrical Equipment, 2011, 28(3): 27-29 doi: 10.3969/j.issn.1005-8354.2011.03.009 [4] RUSSELL C T, CHI P J, DEARBORN, D J, et al. THEMIS ground-based magnetometers[J]. Space Science Reviews, 2008, 141(1/2/3/4): 389-412 [5] ZHANG T L, G BERGHOFER G, MAGNES W, et al. MAG: The Fluxgate Magnetometer of Venus Express[J]. ESA Special Publication, 2007, SP 1295: 1-10 [6] RUSSELL C T, ANDERSON B J, BAUMJOHANN W, et al. The magnetospheric multiscale magnetometers[J]. Space Science Reviews, 2016, 199(1/2/3/4): 189-256 [7] 沈国红, 黄聪, 张鹏飞, 等. 风云三号E星空间环境载荷综合探测技术[J]. 北京大学学报(自然科学版), 2024, 60(1): 145-156SHEN Guohong, HUANG Cong, ZHANG Pengfei, et al. Comprehensive detection payload technology for space environment of FY-3E satellite[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2024, 60(1): 145-156 [8] 陈武祥, 王劲东, 吕尚, 等. 基于Sigma-Delta调制技术的高精度数字磁通门磁强计仿真[J]. 空间科学学报, 2022, 42(2): 284-293 doi: 10.11728/cjss2022.02.210121010CHEN Wuxiang, WANG Jindong, LÜ Shang, et al. Simulation research on precision digital fluxgate magnetometer based on sigma-delta modulation technology[J]. Chinese Journal of Space Science, 2022, 42(2): 284-293 doi: 10.11728/cjss2022.02.210121010 [9] 支萌辉. 高精度数字磁通门传感器研究[D]. 苏州: 苏州大学, 2017ZHI Menghui. Research on High Precision Digital Fluxgate Sensor[D]. Suzhou: Soochow University, 2017 [10] 冯文光. 三轴数字磁通门传感器及其智能化误差补偿方法研究[D]. 西安: 西北工业大学, 2019FENG Wenguang. Study on Three-Axis Digital Fluxgate Sensor and its Intelligent Calibration Method[D]. Xi’an: Northwestern Polytechnical University, 2019 [11] 马迅, 王尧, 孙宇凯. 应用过采样与噪声整形技术的Sigma-Delta ADC设计[J]. 中国集成电路, 2022, 31(4): 59-63 doi: 10.3969/j.issn.1681-5289.2022.04.010MA Xun, WANG Yao, SUN Yukai. Sigma-delta ADC design using over-sampling and noise shaping techniques[J]. China Integrated Circuit, 2022, 31(4): 59-63 doi: 10.3969/j.issn.1681-5289.2022.04.010 [12] 董丽军. 18 bits Sigma-Delta DAC的设计[D]. 哈尔滨: 哈尔滨工业大学, 2014DONG Lijun. Design of 18-Bits Sigma-Delta DAC[D]. Harbin: Harbin Institute of Technology, 2014 [13] 朱国良. Sigma-Delta DAC数字部分的研究与设计[D]. 成都: 电子科技大学, 2021ZHU Guoliang. Research and Design of Sigma-Delta DAC Digital Circuits[D]. Chengdu: University of Electronic Science and Technology of China, 2021 [14] ALLEN P E, HOLBERG D R. CMOS模拟集成电路设计[M]. 2版. 北京: 电子工业出版社, 2007ALLEN P E, HOLBERG D R. CMOS Analog Circuit Design[M]. 2nd ed. New York: Publishing House of Electronics Industry, 2007 [15] ZARE-HOSEINI H, WILLIAMS P. Multi-bit digital to analogue converter and a delta-sigma analogue to digital converter: US, 8537042 B2[P]. 2013-07-17 [16] 王劲东, 周斌, 赵华, 等. 萤火一号火星探测器磁通门磁强计研制[J]. 上海航天, 2013, 30(4): 174-178WANG Jindong, ZHOU Bin, ZHAO Hua, et al. Development of fluxgate magnetometer for YH-1 mars probe[J]. Aerospace Shanghai, 2013, 30(4): 174-178 [17] CERMAN A, KUNA A, RIPKA P, et al. Digitalization of highly precise fluxgate magnetometers[J]. Sensors and Actuators A: Physical, 2005, 121(2): 421-429 doi: 10.1016/j.sna.2005.03.053 [18] 周伶俐. Sigma-delta调制器的研究及其在SIMULINK环境下建模[D]. 武汉: 华中科技大学, 2007ZHOU Lingli. Research on Sigma-delta Modulator and Modeling in Simulink[D]. Wuhan: Huazhong University of Science and Technology, 2007 [19] 张宇豪. 基于FPGA的数字式磁通门传感器的研究与设计[D]. 北京: 北京交通大学, 2020ZHANG Yuhao. Research and Design of Digital Fluxgate Sensor Based on FPGA[D]. Beijing: Beijing Jiaotong University, 2020 [20] 汪莹莹. 三轴磁通门传感器数字化技术研究[D]. 成都: 成都理工大学, 2019WANG Yingying. Research on Digital Technology of Three-Axis Magnetic Fluxgate Sensor[D]. Chengdu: Chengdu University of Technology, 2019 [21] 汪汉国. 基于STM32的三轴磁通门磁强计研究[D]. 苏州: 苏州大学, 2018WANG Hanguo. Research of 3-axis Fluxgate Magnetometer Based on STM32[D]. Suzhou: Soochow University, 2018 [22] 唐列娟. 磁场反馈式磁通门磁强计研究[D]. 武汉: 华中科技大学, 2006TANG Liejuan. Study of Magnetic Field Feedback Fluxgate Magnetometer[D]. Wuhan: Huazhong University of Science & Technology, 2006 [23] STUPAKOV A, PEREVERTOV A. Analog of the induction law for the magnetic Barkhausen noise[J]. Journal of Magnetism and Magnetic Materials, 2020, 498: 166238 doi: 10.1016/j.jmmm.2019.166238 [24] 崔智军, 刘琛. 长条形阵列铁芯磁通门性能研究[J]. 传感技术学报, 2023, 36(11): 1701-1705 doi: 10.3969/j.issn.1004-1699.2023.11.005CUI Zhijun, LIU Chen. Study on performance of fluxgate based on striped array iron core[J]. Chinese Journal of Sensors and Actuators, 2023, 36(11): 1701-1705 doi: 10.3969/j.issn.1004-1699.2023.11.005 -
-