留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

快速稳健的张衡卫星闪电哨声波散射系数自动提取方法

韩金昇 袁静 王桥 刘芹芹 银韩柯 刘海军 赵庶凡 申旭辉 王亚丽

韩金昇, 袁静, 王桥, 刘芹芹, 银韩柯, 刘海军, 赵庶凡, 申旭辉, 王亚丽. 快速稳健的张衡卫星闪电哨声波散射系数自动提取方法[J]. 空间科学学报. doi: 10.11728/cjss2025.04.2023-0127
引用本文: 韩金昇, 袁静, 王桥, 刘芹芹, 银韩柯, 刘海军, 赵庶凡, 申旭辉, 王亚丽. 快速稳健的张衡卫星闪电哨声波散射系数自动提取方法[J]. 空间科学学报. doi: 10.11728/cjss2025.04.2023-0127
HAN Jinsheng, YUAN Jing, WANG Qiao, LIU Qinqin, YIN Hanke, LIU Haijun, ZHAO Shufan, SHEN Xuhui, WANG Yali. Fast and Robust Automatic Extraction Method for the Lightning Whistler Scattering Coefficient of the Zhangheng Satellite (in Chinese). Chinese Journal of Space Science, 2025, 45(4): 1-15 doi: 10.11728/cjss2025.04.2023-0127
Citation: HAN Jinsheng, YUAN Jing, WANG Qiao, LIU Qinqin, YIN Hanke, LIU Haijun, ZHAO Shufan, SHEN Xuhui, WANG Yali. Fast and Robust Automatic Extraction Method for the Lightning Whistler Scattering Coefficient of the Zhangheng Satellite (in Chinese). Chinese Journal of Space Science, 2025, 45(4): 1-15 doi: 10.11728/cjss2025.04.2023-0127

快速稳健的张衡卫星闪电哨声波散射系数自动提取方法

doi: 10.11728/cjss2025.04.2023-0127 cstr: 32142.14.cjss.2023-0127
基金项目: 国家自然科学基金青年基金项目(42104159)和中国地震局教师基金项目(20150109)共同资助
详细信息
    作者简介:
    • 韩金昇 男, 1999年1月出生于河北省唐山市, 硕士. 主要研究方向为地球观测数据智能处理与分析等领域. E-mail: 18812162636@163.com
    通讯作者:
    • 袁静 女, 1981年3月出生于河北省石家庄市, 现为防灾科技学院副教授, 硕士生导师, 主要研究方向为地球观测数据智能处理与分析等领域. E-mail: yuanjing20110824@sina.com
  • 中图分类号: P352

Fast and Robust Automatic Extraction Method for the Lightning Whistler Scattering Coefficient of the Zhangheng Satellite

  • 摘要: 张衡卫星日产数据高达20 GByte, 人工方法已经无法满足海量数据提取的需求. 提出了一种快速稳健的闪电哨声波散射系数自动提取方法. 将原始数据转换为时频图和音频文件; 针对时频图, 创建YOLOV5神经网络自动定位闪电哨声波, 输出其时频位置信息; 根据其时频位置信息截取对应音频文件得到含有闪电哨声波的音频数据, 并用零将其填充为0.8 s的音频片段; 提取音频片段的梅尔频率倒谱系数, 将其输入多头注意力机制改进的门控循环网络, 自动提取闪电哨声波散射系数. 将该方法应用于2020年2月的数据集, 得到如下结果: 其平均绝对误差和平均绝对百分比误差为0.453和0.176, 相较于文献[1]方法降低了70%和 46%. 每段数据平均处理时间为0.074 s, 相较于文献[1]方法降低了92%. 本文提出的自动音频分析方法, 可较为准确和快速地提取闪电哨声波的散射系数.

     

  • 图  1  闪电哨声波. (a)分散且连通性好的哨声波, (b)密集哨声波, (c)连通性差的哨声波

    Figure  1.  Lightning Whistler. (a) Well-spaced and well-connected , (b) tightly spaced , (c) poor connectivity

    图  2  算法框架

    Figure  2.  Algorithm framework diagram

    图  3  YOLOV5框架

    Figure  3.  YOLOV5 framework diagram

    图  4  YOLOV5识别效果

    Figure  4.  YOLOV5 identification result graph

    图  5  MFCCs特征可视化. (a)哨声波识别结果(矩形框), (b)哨声波的MFCCs特征

    Figure  5.  Visualization of MFCCs features. (a) Whistler recognition results (shown in a rectangular box), (b) MFCCs characteristics of the whistler

    图  6  多头注意力机制改进的GRU网络

    Figure  6.  GRU network with improved multi head attention mechanism

    图  7  GRU神经元的内部结构

    Figure  7.  Internal structure diagram of GRU neurons

    图  8  多头注意力机制层结构

    Figure  8.  Structure diagram of multi head attention mechanism layer

    图  9  缩放点积注意力

    Figure  9.  Scaled Dot-Product Attention

    图  10  散射系数自动提取效果. (a)含有闪电哨声波的时频图, (b)散射系数提取结果

    Figure  10.  Automatic extraction of scattering coefficient. (a) Time frequency plot containing lightning whistler, (b) Scattering coefficient extraction result

    图  11  闪电哨声波漏检情况

    Figure  11.  Lightning whistler leakage detection situation

    图  12  闪电哨声波误识别情况

    Figure  12.  Diagram of misidentification of lightning whistler

    图  13  识别结果对比. (a)分散的闪电哨声波, (b)密集的闪电哨声波

    Figure  13.  Comparison chart of recognition results. (a) Distributed lightning whistler, (b)dense lightning whistler

    图  14  闪电哨声波识别结果. (a)分散和密集的闪电哨声波, (b)连通性强和连通性弱的闪电哨声波, (c)持续时间长短或频率跨度不同的闪电哨声波

    Figure  14.  Lightning whistler recognition rendering. (a) Scattered and dense lightning whistler, (b) lightning whistler with strong and weak connectivity, (c) Lightning whistler with different durations or frequency spans

    图  15  拟合效果

    Figure  15.  Fitting effect display chart

    图  16  不同散射系数闪电哨声波拟合结果

    Figure  16.  Fitting results for different scattering coefficients lightning whistler

    图  17  不同优化器MAPE和MAE效果对比

    Figure  17.  Comparison of effects of different optimizers MAPE and MAE

    图  18  MAE和MAPE与模型大小对比

    Figure  18.  Comparison of MAE and MAPE with model size

    图  19  不同“头数量”的拟合效果

    Figure  19.  Fitting effect of different head quantities

    表  1  闪电哨声波识别结果

    Table  1.   Lightning whistle localization outcome

    算法名称P/(%)R/(%)
    YOLOv591.893.4
    下载: 导出CSV

    表  2  散射系数提取结果

    Table  2.   Scattering coefficient extraction results

    性能指标 $ \mathrm{M}\mathrm{A}\mathrm{E} $ $ \mathrm{M}\mathrm{A}\mathrm{P}\mathrm{E} $
    人工方法
    GRU-MHA 0.453 0.176
    GRU-WH 2.361 0.876
    Unet-WH 1.532 0.324
    下载: 导出CSV

    表  3  散射系数提取时间情况

    Table  3.   Scattering coefficient extraction time

    性能指标AET/s
    人工方法360
    LWSC-AEM0.074
    Unet-WH0.9
    下载: 导出CSV
  • [1] FENG Xiaokang, YUAN Jing, WANG Qiao, et al. Automatic extraction of physical parameters of lightning whistler recorded by search coil magnetometer onboard ZhangHeng Satellite[J/OL]. Progress in Geophysics, 2023, 38(6): 2373-2391
    [2] CHEN Y P, NI B B, GU X D, et al. First observations of low latitude whistlers using WHU ELF/VLF receiver system[J]. Science China Technological Sciences, 2017, 60(1): 166-174 doi: 10.1007/s11431-016-6103-5
    [3] CARPENTER D L, ANDERSON R R. An ISEE/whistler model of equatorial electron density in the magnetosphere[J]. Journal of Geophysical Research: Space Physics, 1992, 97(A2): 1097-1108 doi: 10.1029/91JA01548
    [4] SINGH A K, VERMA U P, BHARGAWA A. Remote sensing of Mid/Upper atmosphere using ELF/VLF waves[J]. Global Journal of Science Frontier Research: A Physics and Space Science, 2018, 18(10): 10-21
    [5] OIKE Y, KASAHARA Y, GOTO Y. Spatial distribution and temporal variations of occurrence frequency of lightning whistlers observed by VLF/WBA onboard Akebono[J]. Radio Science, 2014, 49(9): 753-764 doi: 10.1002/2014RS005523
    [6] BAYUPATI I P A, KASAHARA Y, GOTO Y. Study of dispersion of lightning whistlers observed by Akebono satellite in the earth's plasmasphere[J]. IEICE Transactions on Communications, 2012, E95. B(11): 3472-3479
    [7] CLILVERD M A, NUNN D, LEV-TOV S J, et al. Determining the size of lightning-induced electron precipitation patches[J]. Journal of Geophysical Research: Space Physics, 2002, 107(A8): SIA 10-1-SIA 10-11
    [8] KISHORE A, DEO A, KUMAR S. Upper atmospheric remote sensing using ELF–VLF lightning generated tweek and whistler sferics[J]. The South Pacific Journal of Natural and Applied sciences, 2016, 34(1): 12-20 doi: 10.1071/SP16002
    [9] PARROT M, PINÇON J L, SHKLYAR D. Short-fractional hop whistler rate observed by the low-altitude satellite DEMETER at the end of the solar cycle 23[J]. Journal of Geophysical Research: Space Physics, 2019, 124(5): 3522-3531 doi: 10.1029/2018JA026176
    [10] HORNE R B, GLAUERT S A, MEREDITH N P, et al. Space weather impacts on satellites and forecasting the Earth's electron radiation belts with SPACECAST[J]. Space Weather, 2013, 11(4): 169-186 doi: 10.1002/swe.20023
    [11] REN Y, DAI L, LI W, et al. Whistler waves driven by field-aligned streaming electrons in the near-Earth magnetotail reconnection[J]. Geophysical Research Letters, 2019, 46(10): 5045-5054 doi: 10.1029/2019GL083283
    [12] REN Y, DAI L, WANG C, et al. Statistical characteristics in the spectrum of whistler waves near the diffusion region of dayside magnetopause reconnection[J]. Geophysical Research Letters, 2021, 48(1): e2020GL090816 doi: 10.1029/2020GL090816
    [13] ZHOU Huaibei, XIAO Zuo, SUN Chuanli. A study of cloud-earth lightning parameters by using whistler spectrum[J]. Chinese Journal of Radio Science, 1989(1): 1-7 doi: 10.13443/j.cjors.1989.01.001
    [14] 何友文. 哨声“源”的分析[J]. 空间科学学报, 1981, 1(2): 143-152 doi: 10.11728/cjss1981.02.143

    HE Youwen. An analysis of whistler sources[J]. Chinese Journal of Space Science, 1981, 1(2): 143-152 doi: 10.11728/cjss1981.02.143
    [15] ARTEMYEV A V, LAPSHIN N V, SIMONOV S A. Prospects of predicting the number of geese on spring migration stopover sites in Karelia[J]. The Herald of Game Management, 2014, 11(2): 249-255
    [16] HU Yunpeng, ZHIMA Zeren, HUANG Jianping, et al. Algorithms and implementation of wave vector analysis tool for the electromagnetic waves recorded by the CSES satellite[J]. Chinese Journal of Geophysics, 2020, 63(5): 1751-1765 doi: 10.6038/cjg2020N0405
    [17] HELLIWELL R A. Whistlers and Related Ionospheric Phenomena[M]. Stanford: Stanford University Press, 1965
    [18] LICHTENBERGER J, FERENCZ C, BODNÁR L, et al. Automatic whistler detector and analyzer system: automatic whistler detector[J]. Journal of Geophysical Research: Space Physics, 2008, 113(A12): A12201
    [19] Stanford VLF Group. Automated detection of whistlers for the TARANIS spacecraft overview of the project[EB/OL]. 2009
    [20] DHARMA K S, BAYUPATI I P A, BUANA P W. Automatic lightning whistler detection using connected component labeling method[J]. Journal of Theoretical and Applied Information Technology, 2014, 66(2): 638-645
    [21] KONAN O J E Y, MISHRA A K, LOTZ S. Machine learning techniques to detect and characterise whistler radio waves[OL]. arXiv preprint arXiv: 2002.01244v1, 2020
    [22] YUAN Jing, WANG Qiao, ZHANG Xuemin, et al. Advances in the automatic detection algorithms for lightning whistlers recorded by electromagnetic satellite data[J]. Chinese Journal of Geophysics, 2021, 64(5): 1471-1495. DOI: 10.6038/cjg2021O0263
    [23] YUAN Jing, WANG Qiao, YANG Dehe, et al. Automatic recognition algorithm of lightning whistlers observed by the Search Coil Magnetometer onboard the Zhangheng-1 Satellite[J]. Chinese Journal of Geophysics, 2021, 64(11): 3905-3924. DOI: 10.6038/cjg2021O0164
    [24] YUAN Jing, WANG Zijie, ZHIMA Zeren, et al. Automatic recognition algorithm of the lightning whistler waves by using speech processing technology[J]. Chinese Journal of Geophysics, 2022, 65(3): 882-897. DOI: 10.6038/cjg2022P0365
    [25] ECKERSLEY T L. Musical atmospherics[J]. Nature, 1935, 135(3403): 104-105 doi: 10.1038/135104a0
    [26] DAI Jian, ZHAO Xu, LI Lianpeng, et al. Improved YOLOV5-based infrared dim-small target detection under complex background[J]. Infrared Technology, 2022, 44(5): 504-512
    [27] HE Yu, TIAN Junwei, ZHANG Zhen, et al. Lightweight research of YOLOV5 target detection[J]. Computer Engineering and Applications, 2023, 59(1): 92-99
    [28] SHAO Yanhua, ZHANG Duo, CHU Hongyu, et al. A review of YOLO object detection based on deep learning[J]. Journal of Electronics :Times New Roman;">& Information Technology, 2022, 44(10): 3697-3708. DOI: 10.11999/JEIT210790
    [29] PANG Cong, JIANG Yong, LIAO Chengwang, et al. Automatic recognition of natural earthquakes and artificial blasting based on the sample entropy of the Mel frequency cepstrum coefficient and support vector machine optimized by gray wolf optimization[J]. China Earthquake Engineering Journal, 2022, 44(5): 1169-1175
    [30] 袁正午, 肖旺辉. 改进的混合MFCC语音识别算法研究[J]. 计算机工程与应用, 2009, 45(33): 108-110

    YUAN Zhengwu, XIAO Wanghui. Improved speech recognition algorithm based on MFCC feature[J]. Computer Engineering and Applications, 2009, 45(33): 108-110
    [31] TAN Xiangyong, HU Tianying, LIU Feng. Serial correlation test for linear models under Huber loss[J]. Journal of Chongqing University of Technology (Natural Science), 2023, 37(8): 342-347
  • 加载中
图(19) / 表(3)
计量
  • 文章访问数:  340
  • HTML全文浏览量:  57
  • PDF下载量:  379
  • 被引次数: 

    0(来源:Crossref)

    0(来源:其他)

出版历程
  • 收稿日期:  2023-11-13
  • 修回日期:  2024-07-08
  • 网络出版日期:  2024-08-15

目录

    /

    返回文章
    返回