留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

模拟空间辐射与微重力环境对鼠视网膜蛋白表达的影响对比

孙思敏 丰俊东 付豪 何承宇 田刘欣 薄宏宇

孙思敏, 丰俊东, 付豪, 何承宇, 田刘欣, 薄宏宇. 模拟空间辐射与微重力环境对鼠视网膜蛋白表达的影响对比[J]. 空间科学学报. doi: 10.11728/cjss2025.05.2024-0133
引用本文: 孙思敏, 丰俊东, 付豪, 何承宇, 田刘欣, 薄宏宇. 模拟空间辐射与微重力环境对鼠视网膜蛋白表达的影响对比[J]. 空间科学学报. doi: 10.11728/cjss2025.05.2024-0133
SUN Simin, FENG Jundong, FU Hao, HE Chengyu, TIAN Liuxin, BO Hongyu. Compared Analysis of Retinal Protein Expression Induced by Neutron Radiation and Microgravity (in Chinese). Chinese Journal of Space Science, 2025, 45(5): 1-12 doi: 10.11728/cjss2025.05.2024-0133
Citation: SUN Simin, FENG Jundong, FU Hao, HE Chengyu, TIAN Liuxin, BO Hongyu. Compared Analysis of Retinal Protein Expression Induced by Neutron Radiation and Microgravity (in Chinese). Chinese Journal of Space Science, 2025, 45(5): 1-12 doi: 10.11728/cjss2025.05.2024-0133

模拟空间辐射与微重力环境对鼠视网膜蛋白表达的影响对比

doi: 10.11728/cjss2025.05.2024-0133 cstr: 32142.14.cjss.2024-0133
基金项目: 中国载人航天工程空间医学实验项目(HYZHXM02004)和国家自然科学基金项目(U2267220)共同资助
详细信息
    作者简介:
    • 孙思敏 女, 2002年1月出生于河北省邯郸市, 现为南京航空航天大学能源动力专业研究生, 主要研究方向为辐射生物效应与辐射风险评估等. E-mail: sunsimin@nuaa.edu.cn
    通讯作者:
    • 丰俊东 女, 1978年12月出生于黑龙江省哈尔滨市, 现为南京航空航天大学核科学与技术系副教授, 硕士生导师, 主要研究方向为辐射风险评估与防护技术研究等. E-mail: jundongfeng@nuaa.edu.cn
  • 中图分类号: Q291

Compared Analysis of Retinal Protein Expression Induced by Neutron Radiation and Microgravity

  • 摘要: 研究通过生物信息学方法对比中子辐射与微重力对鼠视网膜蛋白表达的影响, 旨为理解空间环境对视网膜的损伤机制提供生物学基础. 基于差异蛋白数据, 结合基因本体论(GO)、京都基因和基因组百科全书(KEGG)分析及蛋白质-蛋白质相互作用(PPI)网络构建发现: 中子辐射GO分析显著富集于应对外源性刺激, 肌动蛋白丝, 相同蛋白结合, 微重力则主要富集于相机型眼晶状体发育, 线粒体和晶状体结构成分. 中子辐射组KEGG富集于运动蛋白通路, 黏附斑通路和肌动蛋白细胞骨架调控等通路; 微重力组富集于运动蛋白和心肌收缩通路. PPI网络核心模块显示, 中子辐射刺激最显著的生物过程为肌肉收缩, 微重力组最显著的生物过程为相机型眼发育. 在中子辐射和微重力刺激下, 蛋白PMEL, PTN, TPM1, RAB27A表达变化趋势一致, PDPN(Podoplanin)出现相反的变化趋势. 结论揭示视网膜蛋白对中子辐射和微重力刺激的响应存在差异.

     

  • 图  1  中子辐射诱导视网膜差异表达蛋白生物学过程、细胞组分、分子功能的GO分析

    Figure  1.  GO analysis of BP, CC, and MF of DEPs induced by neutron radiation in retina

    图  2  中子辐射诱导视网膜差异表达蛋白KEGG通路分析气泡

    Figure  2.  Bubble chart of KEGG pathway analysis of DEPs induced by neutron radiation in retina

    图  3  中子辐射诱导视网膜差异表达蛋白的PPI, 中间的同心圆网络为最重要的模块

    Figure  3.  PPI network of DEPs induced by neutron radiation in retina, with the innermost concentric circles representing the most important modules

    图  4  微重力环境诱导视网膜差异表达蛋白BP, CC, MF的GO分析

    Figure  4.  GO analysis of DEPs in the retina induced by microgravity environment in terms of BP, CC, and MF

    图  5  微重力环境诱导视网膜差异表达蛋白KEGG通路分析气泡图

    Figure  5.  Bubble chart of KEGG pathway analysis for differentially expressed proteins in the retina induced by microgravity environment

    图  6  微重力环境诱导视网膜差异表达蛋白的PPI

    Figure  6.  PPI of DEPs in the retina induced by microgravity environmen

    表  1  中子辐射诱导视网膜蛋白差异表达枢纽蛋白的节点度(前10个)

    Table  1.   Node degree of differentially expressed Hub proteins in the retina induced by neutron radiation (top 10)

    RankNameScore
    1VCL14
    2MYH119
    3MYL98
    3TAGLN8
    3MYLK8
    3TPM28
    3TPM18
    8CALD17
    8FLNA7
    10ANXA56
    下载: 导出CSV

    表  2  最重要模块的蛋白组成(中子辐射)

    Table  2.   Protein composition of the most important module (neutron radiation)

    NameLog2 FCp-value
    VCL0.3156726060.003270326
    TAGLN1.3066935810.000112783
    MYLK0.8426557940.001317789
    MYL91.2584564940.000221689
    TPM10.7922683630.000407139
    TPM21.2845919440.000206282
    CALD10.5090004610.000924537
    MYH111.4684848265.69×10–5
    下载: 导出CSV

    表  3  最重要模块的部分功能(中子辐射)

    Table  3.   Partial functions of the most important module (neutron radiation)

    GO-ID p-value Description Genes in test set
    6936 3.12×10–15 muscle contraction CALD1, TPM2, TPM1, MYH11, MYL9, VCL, MYLK
    3012 8.59×10–15 muscle system process CALD1, TPM2, TPM1, MYH11, MYL9, VCL, MYLK
    3008 9.35×10–6 system process CALD1, TPM2, TPM1, MYH11, MYL9, VCL, MYLK
    43462 2.13×10–6 regulation of ATPase activity TPM2, TPM1
    32501 6.22×10–5 multicellular organismal process TAGLN, CALD1, TPM2, TPM1, MYH11, MYL9, VCL, MYLK
    30811 1.99×10–3 regulation of nucleotide catabolic process TPM2, TPM1
    33121 1.99×10–3 regulation of purine nucleotide catabolic process TPM2, TPM1
    48251 2.24×10–3 elastic fiber assembly MYH11
    43297 2.80×10–3 apical junction assembly VCL
    7517 2.90×10–3 muscle organ development TAGLN, MYH11
    下载: 导出CSV

    表  4  微重力环境诱导视网膜蛋白差异表达枢纽蛋白的节点度(前10个)

    Table  4.   Node degree of Hub proteins differentially expressed in the retina induced by microgravity environment (top 10)

    NameRankScore
    ACTA1113
    CRYAB212
    TPM1311
    TNNT349
    TNNI249
    MYH468
    MYH868
    CSRP368
    CRYBB197
    PXN97
    下载: 导出CSV

    表  5  最重要模块的蛋白组成(微重力环境)

    Table  5.   Protein composition of the most important module (microgravity environment)

    NameLog2 FCFDR adjusted
    MYH8–2.6801795860.008307896
    CRYBA1–4.5043647150.048282442
    MYH4–3.8541882670.03172948
    ACTA1–4.3328871440.03201434
    CRYBB2–3.6673935990.047707924
    TPM14.4167317050.00830411
    MYH7 B–1.1971243030.020782533
    CRYBB1–4.6185067080.048847149
    TNNI2–3.4564030980.047905536
    CRYGB–4.4813993590.048586694
    TNNT3–4.3066199870.031979082
    CRYAB–3.4758776890.048783752
    CRYAA–3.1324466210.048329001
    下载: 导出CSV

    表  6  最重要模块的部分功能(微重力环境)

    Table  6.   Partial functions of the most important module (microgravity environment)

    GO-ID p-value Description Genes in test set
    43010 9.94×10–10 camera-type eye development CRYGB, CRYBA1, CRYBB2, CRYAA, CRYAB
    1654 2.54×10–9 eye development CRYGB, CRYBA1, CRYBB2, CRYAA, CRYAB
    7423 3.05×10–8 sensory organ development CRYGB, CRYBA1, CRYBB2, CRYAA, CRYAB
    2088 3.15×10–7 lens development in camera-type eye CRYGB, CRYAA, CRYAB
    60561 3.93×10–7 apoptosis involved in morphogenesis CRYAA, CRYAB
    70307 3.93×10–7 lens fiber cell development CRYGB, CRYAA
    70309 3.93×10–7 lens fiber cell morphogenesis CRYGB, CRYAA
    48513 5.86×10–7 organ development ACTA1, CRYGB, TPM1, CRYBA1, CRYBB2, CRYAA, CRYAB
    7021 7.87×10–7 tubulin complex assembly CRYAA, CRYAB
    48731 3.12×10–6 system development ACTA1, CRYGB, TPM1, CRYBA1, CRYBB2, CRYAA, CRYAB
    下载: 导出CSV

    表  7  中子辐射诱导视网膜PMEL, PTN, TPM1, RAB27 A, PDPN差异表达情况

    Table  7.   Differential expression of PMEL, PTN, TPM1, RAB27 A, and PDPN in the retina induced by neutron radiation

    NameLog2 FCp-valueExpression
    PMEL1.5172162150.004936262Up
    PTN0.5386500120.015295976Up
    TPM10.7922683630.000407139Up
    RAB27 A0.5597087330.01240258Up
    PDPN–0.3906140250.015486769Down
    下载: 导出CSV

    表  8  微重力环境诱导视网膜PMEL, PTN, TPM1, RAB27 A, PDPN差异表达情况

    Table  8.   Differential expression of PMEL, PTN, TPM1, RAB27 A, and PDPN in the retina induced by microgravity environment

    NameLog2 FCFDR adjustedExpression
    PMEL5.2797230530.00832942Up
    PTN5.2782215950.008310423Up
    TPM14.4167317050.00830411Up
    RAB27 A2.7204128020.031670154Up
    PDPN2.1484689270.048066344Up
    下载: 导出CSV
  • [1] MAO X W, BOERMA M, RODRIGUEZ D, et al. Acute effect of low-dose space radiation on mouse retina and retinal endothelial cells[J]. Radiation Research, 2018, 190(1): 45-52 doi: 10.1667/RR14977.1
    [2] VAN REYK D M, GILLIES M C, DAVIES M J. The retina: oxidative stress and diabetes[J]. Redox Report, 2003, 8(4): 187-192 doi: 10.1179/135100003225002673
    [3] LEE A G, MADER T H, GIBSON C R, et al. Spaceflight associated neuro-ocular syndrome (SANS) and the neuro-ophthalmologic effects of microgravity: a review and an update[J]. NPJ Microgravity, 2020, 6(1): 7 doi: 10.1038/s41526-020-0097-9
    [4] MADER T H, GIBSON C R, PASS A F, et al. Optic disc edema, globe flattening, choroidal folds, and hyperopic shifts observed in astronauts after long-duration space flight[J]. Ophthalmology, 2011, 118(10): 2058-2069 doi: 10.1016/j.ophtha.2011.06.021
    [5] VYAS R J, YOUNG M, MURRAY M C, et al. Decreased vascular patterning in the retinas of astronaut crew members as new measure of ocular damage in spaceflight-associated neuro-ocular syndrome[J]. Investigative Ophthalmology :Times New Roman;">& Visual Science, 2020, 61(14): 34
    [6] MAO X W, BYRUM S, NISHIYAMA N C, et al. Impact of spaceflight and artificial gravity on the mouse retina: biochemical and proteomic analysis[J]. International Journal of Molecular Sciences, 2018, 19(9): 2546 doi: 10.3390/ijms19092546
    [7] FENG J D, ZHAO X D, LUO Y Z, et al. Effects of neutron irradiation on ophthalmic fundus structure, visual function and the mechanisms underlying these effects in rats[J]. Acta Astronautica, 2021, 186: 403-417 doi: 10.1016/j.actaastro.2021.04.032
    [8] MAO X W, NISHIYAMA N C, BYRUM S D, et al. Characterization of mouse ocular response to a 35-day spaceflight mission: Evidence of blood-retinal barrier disruption and ocular adaptations[J]. Scientific Reports, 2019, 9(1): 8215 doi: 10.1038/s41598-019-44696-0
    [9] SHANNON P, MARKIEL A, OZIER O, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks[J]. Genome Research, 2003, 13(11): 2498-2504 doi: 10.1101/gr.1239303
    [10] BADER G D, HOGUE C W V. An automated method for finding molecular complexes in large protein interaction networks[J]. BMC Bioinformatics, 2003, 4(1): 2 doi: 10.1186/1471-2105-4-2
    [11] MAERE S, HEYMANS K, KUIPER M. BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks[J]. Bioinformatics, 2005, 21(16): 3448-3449 doi: 10.1093/bioinformatics/bti551
    [12] JEONG H, TOMBOR B, ALBERT R, et al. The large-scale organization of metabolic networks[J]. Nature, 2000, 407(6804): 651-654 doi: 10.1038/35036627
    [13] CHIN C H, CHEN S H, WU H H, et al. cytoHubba: identifying hub objects and sub-networks from complex interactome[J]. BMC Systems Biology, 2014, 8(4): S11
    [14] MU Y X, ZHANG N, WEI D Y, et al. Müller cells are activated in response to retinal outer nuclear layer degeneration in rats subjected to simulated weightlessness conditions[J]. Neural Regeneration Research, 2025, 20(7): 2116-2128 doi: 10.4103/NRR.NRR-D-23-01035
    [15] MIYARA N, SHINZATO M, YAMASHIRO Y, et al. Proteomic analysis of rat retina in a steroid-induced ocular hypertension model: potential vulnerability to oxidative stress[J]. Japanese Journal of Ophthalmology, 2008, 52(2): 84-90 doi: 10.1007/s10384-007-0507-5
    [16] ASHBY R S, MEGAW P L, MORGAN I G. Changes in retinal αB-crystallin (cryab) RNA transcript levels during periods of altered ocular growth in chickens[J]. Experimental Eye Research, 2010, 90(2): 238-243 doi: 10.1016/j.exer.2009.10.011
    [17] ZHANG S B, LIU C P, WANG Q, et al. CRYAA and GJA8 promote visual development after whisker tactile deprivation[J]. Heliyon, 2023, 9(3): e13897 doi: 10.1016/j.heliyon.2023.e13897
    [18] XU Q, BAI Y J HUANG L Z, et al. Knockout of αA-crystallin inhibits ocular neovascularization[J]. Investigative Ophthalmology :Times New Roman;">& Visual Science, 2015, 56(2): 816-826
    [19] FORT P E, LAMPI K J. New focus on alpha-crystallins in retinal neurodegenerative diseases[J]. Experimental Eye Research, 2011, 92(2): 98-103 doi: 10.1016/j.exer.2010.11.008
    [20] BOYA P, KAARNIRANTA K, HANDA J T, et al. Lysosomes in retinal health and disease[J]. Trends in Neurosciences, 2023, 46(12): 1067-1082 doi: 10.1016/j.tins.2023.09.006
    [21] VALAPALA M, EDWARDS M, HOSE S, et al. βA3/A1-crystallin is a critical mediator of STAT3 signaling in optic nerve astrocytes[J]. Scientific Reports, 2015, 5(1): 8755 doi: 10.1038/srep08755
    [22] ZIGLER JR J S, SINHA D. βA3/A1-crystallin: more than a lens protein[J]. Progress in Retinal and Eye Research, 2015, 44: 62-85 doi: 10.1016/j.preteyeres.2014.11.002
    [23] BÖHM M R R, PFROMMER S, CHIWITT C, et al. Crystallin-β-b2-overexpressing NPCs support the survival of injured retinal ganglion cells and photoreceptors in rats[J]. Investigative Ophthalmology :Times New Roman;">& Visual Science, 2012, 53(13): 8265-8279
    [24] LIEDTKE T, SCHWAMBORN J C, SCHRÖER U, et al. Elongation of axons during regeneration involves retinal crystallin β b2 (crybb2)[J]. Molecular :Times New Roman;">& Cellular Proteomics, 2007, 6(5): 895-907
    [25] LIU H H, BELL K, HERRMANN A, et al. Crystallins play a crucial role in glaucoma and promote neuronal cell survival in an in vitro model through modulating Müller cell secretion[J]. Investigative Ophthalmology :Times New Roman;">& Visual Science, 2022, 63(8): 3
    [26] HODGES E D, CHRYSTAL P W, FOOTZ T, et al. Disrupting the repeat domain of premelanosome protein (PMEL) produces dysamyloidosis and dystrophic ocular pigment reflective of pigmentary glaucoma[J]. International Journal of Molecular Sciences, 2023, 24(19): 14423 doi: 10.3390/ijms241914423
    [27] ZHU X, BAI Y, YU W, et al. The effects of pleiotrophin in proliferative diabetic retinopathy[J]. PloS One, 2015, 10(1): e0115523 doi: 10.1371/journal.pone.0115523
    [28] LAMPROU M, KASTANA P, KOFINA F, et al. Pleiotrophin selectively binds to vascular endothelial growth factor receptor 2 and inhibits or stimulates cell migration depending on αν β3 integrin expression[J]. Angiogenesis, 2020, 23(4): 621-636 doi: 10.1007/s10456-020-09733-x
    [29] LI R, LIANG Y X, LIN B. Accumulation of systematic TPM1 mediates inflammation and neuronal remodeling by phosphorylating PKA and regulating the FABP5/NF‐κB signaling pathway in the retina of aged mice[J]. Aging Cell, 2022, 21(3): e13566 doi: 10.1111/acel.13566
    [30] RONG L, JING Z, MENG C, et al. TPM1 mediates inflammation by regulating PKA/CREB signaling pathway[J]. Investigative Ophthalmology :Times New Roman;">& Visual Science, 2022, 63(7): 4125-F0362
    [31] IACONO D, HATCH K, MURPHY E K, et al. Proteomic changes in the hippocampus of large mammals after total-body low dose radiation[J]. PloS One, 2024, 19(3): e0296903 doi: 10.1371/journal.pone.0296903
    [32] KLOMP A E, TEOFILO K, LEGACKI E, et al. Analysis of the linkage of MYRIP and MYO7A to melanosomes by RAB27A in retinal pigment epithelial cells[J]. Cell Motility, 2007, 64(6): 474-487 doi: 10.1002/cm.20198
    [33] REICHHART N, MARKOWSKI M, ISHIYAMA S, et al. Rab27a GTPase modulates L-type Ca2+ channel function via interaction with the II–III linker of CaV1.3 subunit[J]. Cellular Signalling, 2015, 27(11): 2231-2240 doi: 10.1016/j.cellsig.2015.07.023
    [34] OUCHI T, KONO K, SATOU R, et al. Upregulation of Amy1 in the salivary glands of mice exposed to a lunar gravity environment using the multiple artificial gravity research system[J]. Frontiers in Physiology, 2024, 15: 1417719 doi: 10.3389/fphys.2024.1417719
    [35] RETZBACH E P, SHEEHAN S A, KRISHNAN H, et al. Independent effects of Src kinase and podoplanin on anchorage independent cell growth and migration[J]. Molecular Carcinogenesis, 2022, 61(7): 677-689 doi: 10.1002/mc.23410
    [36] RUSU M C, NICOLESCU M I, VRAPCIU A D. Evidence of lymphatics in the rat eye retina[J]. Annals of Anatomy-Anatomischer Anzeiger, 2022, 244: 151987 doi: 10.1016/j.aanat.2022.151987
    [37] ESHAQ R, WARAR R, HARRIS N. Upregulation of Prox‐1, podoplanin and LYVE‐1 in retinal endothelial cells under hyperglycemic conditions[J]. The FASEB Journal, 2020, 34(S1): 1
    [38] BONENTE D, BIANCHI L, DE SALVO R, et al. Co-Expression of podoplanin and CD44 in proliferative vitreoretinopathy epiretinal membranes[J]. International Journal of Molecular Sciences, 2023, 24(11): 9728 doi: 10.3390/ijms24119728
    [39] BADHWAR G D, KEITH J E, CLEGHORN T F. Neutron measurements onboard the space shuttle[J]. Radiation Measurements, 2001, 33(3): 235-241 doi: 10.1016/S1350-4487(00)00159-1
    [40] ZEITLIN C, CASTRO A J, BEARD K B, et al. Results from the radiation assessment detector on the international space station: Part 1, the charged particle detector[J]. Life Sciences in Space Research, 2023, 39: 67-75 doi: 10.1016/j.lssr.2023.01.003
    [41] PROSS H D, KOST M, KIEFER J. Repair of radiation induced genetic damage under microgravity[J]. Advances in Space Research, 1994, 14(10): 125-130 doi: 10.1016/0273-1177(94)90461-8
    [42] HORNECK G, RETTBERG P, KOZUBEK S, et al. The influence of microgravity on repair of radiation-induced DNA damage in bacteria and human fibroblasts[J]. Radiation Research, 1997, 147(3): 376-384 doi: 10.2307/3579347
    [43] STRIKE T A. Acute mortality of mice and rats exposed to 14 MeV neutrons[J]. Radiation Research, 1970, 43(3): 679-690 doi: 10.2307/3573237
    [44] NILSSON S, HELOU K, WALENTINSSON A, et al. Rat–mouse and rat–human comparative maps based on gene homology and high-resolution zoo-FISH[J]. Genomics, 2001, 74(3): 287-298 doi: 10.1006/geno.2001.6550
  • 加载中
图(6) / 表(8)
计量
  • 文章访问数:  117
  • HTML全文浏览量:  19
  • PDF下载量:  3
  • 被引次数: 

    0(来源:Crossref)

    0(来源:其他)

出版历程
  • 收稿日期:  2024-10-22
  • 修回日期:  2025-05-21
  • 网络出版日期:  2025-05-22

目录

    /

    返回文章
    返回