留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

航天器对小行星抵近探测过程中的视频超分辨方法

陈宇涵 陈宇 邓丽 陈实

陈宇涵, 陈宇, 邓丽, 陈实. 航天器对小行星抵近探测过程中的视频超分辨方法[J]. 空间科学学报. doi: 10.11728/cjss2026.01.2025-0002
引用本文: 陈宇涵, 陈宇, 邓丽, 陈实. 航天器对小行星抵近探测过程中的视频超分辨方法[J]. 空间科学学报. doi: 10.11728/cjss2026.01.2025-0002
CHEN Yuhan, CHEN Yu, DENG Li, CHEN Shi. Video Super-resolution Method for Spacecraft Approaching and Detecting Asteroids (in Chinese). Chinese Journal of Space Science, 2026, 46(1): 150-162 doi: 10.11728/cjss2026.01.2025-0002
Citation: CHEN Yuhan, CHEN Yu, DENG Li, CHEN Shi. Video Super-resolution Method for Spacecraft Approaching and Detecting Asteroids (in Chinese). Chinese Journal of Space Science, 2026, 46(1): 150-162 doi: 10.11728/cjss2026.01.2025-0002

航天器对小行星抵近探测过程中的视频超分辨方法

doi: 10.11728/cjss2026.01.2025-0002 cstr: 32142.14.cjss.2025-0002
详细信息
    作者简介:
    • 陈宇涵 男, 现就读于中国科学院国家空间科学中心, 硕士研究生, 专业为计算机技术. 主要研究方向为图像处理技术. E-mail: 1027690140@qq.com
    通讯作者:
    • 邓丽 女, 博士研究生导师, 中国科学院国家空间科学中心研究员, 主要研究方向为大数据及图像处理技术、目标智能检测技术、星间测量和相对定位技术等. E-mail: dengli@nssc.ac.cn
  • 中图分类号: TP39

Video Super-resolution Method for Spacecraft Approaching and Detecting Asteroids

  • 摘要: 针对抵近探测中平台运动、抖动导致的动态图像序列模糊及分辨率低的问题, 提出了一种基于BasicVSR++的视频超分辨方法. 通过引入空间和通道注意力机制强化细节特征提取, 结合共享投射权重、多组机制和采样点调制优化对齐模块, 弥补正则卷积在长距离依赖与自适应空间聚集的不足. 采用下采样与低通滤波器结合的方式, 减少高频成分, 提升抗图像抖动鲁棒性, 同时引入新上采样模块, 通过融合局部与全局特征生成自适应上采样核, 进一步扩展感受野, 以更好地恢复全局结构并重建细节. 仿真实验结果显示, 本文提出的方法在峰值信噪比(PSNR)和结构相似性(SSIM)指标上, 分别比原始方法提高了2.2%和2.1%, 验证了本文方法在抵近探测图像序列超分辨率重建质量提升方面的有效性.

     

  • 图  1  CBAM模块结构

    Figure  1.  Structure of CBAM module

    图  2  通道注意力模块

    Figure  2.  Channel attention module

    图  3  空间注意力模块

    Figure  3.  Spatial attention module

    图  4  CBAM结合残差块

    Figure  4.  CBAM combined with residual block

    图  5  动态上采样模块结构

    Figure  5.  Dynamic upsampling module structure

    图  6  动态上采样模块在网络中的作用

    Figure  6.  Role of the dynamic up-sampling module in the network

    图  7  BlurPool下采样结构及应用方式

    Figure  7.  BlurPool downsampling structure and application methods

    图  8  不同超分辨率方法重建图像对比

    Figure  8.  Comparison of reconstructed images obtained by different super-resolution methods

    图  9  添加噪声、提升分辨率及运动模糊场景下模型效果对比

    Figure  9.  Comparison of model effects under noise adding, resolution increasing and motion blur scenes

    表  1  网络训练所用网络配置条件

    Table  1.   Configuration conditions used for network training

    软硬件配置型号/版本号
    CPUIntel Core i7-12700
    GPUNVIDIA RTX 3080
    内存12 GB
    软件环境Python3.9, CUDA12.1, Pytorch1.7.1
    下载: 导出CSV

    表  2  多干扰因素下模型成像指标对比

    Table  2.   Comparison of model imaging indicators under multiple interference factors

    Metrics Bicubic SRCNN TOFlow EDVR RSDN BasicVSR++ Ours
    Add noise SSIM 0.8684 0.8654 0.8748 0.8912 0.8954 0.9008 0.9171
    PSNR 28.61 29.54 29.67 30.69 30.95 31.28 31.82
    Resolution changes SSIM 0.8625 0.8751 0.8779 0.8852 0.8952 0.9010 0.9173
    PSNR 28.93 29.10 29.79 30.65 31.04 31.30 31.83
    Motion blur SSIM 0.8586 0.8693 0.8767 0.8792 0.8972 0.9011 0.9174
    PSNR 28.27 28.98 29.15 30.12 30.84 31.31 31.81
    下载: 导出CSV

    表  3  模型消融实验结果

    Table  3.   Model ablation test results

    Test No. CBAM CARAFE IDCN BlurPool PSNR/dB SSIM
    1 × × × × 31.39 0.9019
    2 × × × 31.51 0.9085
    3 × × 31.72 0.9126
    4 × 31.86 0.9176
    5 31.91 0.9181
      符号√表示该实验组包含该模块, 符号×表示未包含该模块.
    下载: 导出CSV
  • [1] DONG C, LOY C C, HE K M, et al. Image super-resolution using deep convolutional networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(2): 295-307 doi: 10.1109/TPAMI.2015.2439281
    [2] KIM J, LEE J K, LEE K M. Accurate image super-resolution using very deepconvolutional networks[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. LasVegas: IEEE, 2016: 1646-1654
    [3] YANG J C, HUANG T. Image super-resolution: Historical overview and future challenges[M]//MILANFAR P. Super-Resolution Imaging. Boca Raton: CRC Press, 2017: 1-34
    [4] LIU H Y, RUAN Z B, ZHAO P, et al. Video super-resolution based on deep learning: a comprehensive survey[J]. Artificial Intelligence Review, 2022, 55(8): 5981-6035 doi: 10.1007/s10462-022-10147-y
    [5] LEPCHA D C, GOYAL B, DOGRA A, et al. Image super-resolution: a comprehensive review, recent trends, challenges and applications[J]. Information Fusion, 2022, 91: 230-260 doi: 10.1016/j.inffus.2022.10.007
    [6] HA V K, REN J C, XU X Y, et al. Deep learning based single image super-resolution: A survey[C]//9th Advances in Brain Inspired Cognitive Systems. Cham: Springer, 2018: 106-119
    [7] WANG Z H, CHEN J, HOI S C H. Deep learning for image super-resolution: A survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(10): 3365-3387 doi: 10.1109/TPAMI.2020.2982166
    [8] JENEFA A, KURIAKOSE B M, EDWARD N V, et al. EDSR: Empowering super-resolution algorithms with high-quality DIV2K images[J]. Intelligent Decision Technologies, 2023, 17(4): 1249-1263 doi: 10.3233/IDT-230218
    [9] NAGANO Y, KIKUTA Y. SRGAN for super-resolving low-resolution food images[C]//Proceedings of the Joint Workshop on Multimedia for Cooking and Eating Activities and Multimedia Assisted Dietary Management. New York: ACM, 2018: 33-37
    [10] WANG X T, CHAN K C K, YU K, et al. EDVR: Video restoration with enhanced deformable convolutional networks[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Long Beach: IEEE, 2019: 1954-1963
    [11] TIAN Y P, ZHANG Y L, FU Y, et al. TDAN: Temporally-Deformable Alignment Network for video super-resolution[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 3357-3366
    [12] GOPALAKRISHNAN S, CHOUDHURY A. A “deep” review of video super-resolution[J]. Signal Processing: Image Communication, 2024, 129: 117175 doi: 10.1016/j.image.2024.117175
    [13] CHAN K C K, ZHOU S C, XU X Y, et al. BasicVSR++: Improving video super-resolution with enhanced propagation and alignment[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022: 5962-5971
    [14] RABINOWITZ D L. Detection of Earth-approaching asteroids in near real time[J]. Astronomical Journal, 1991, 101(4): 1518-1529 doi: 10.1086/115785
    [15] NIU Z Y, ZHONG G A, YU H. A review on the attention mechanism of deep learning[J]. Neurocomputing, 2021, 452: 48-62 doi: 10.1016/j.neucom.2021.03.091
    [16] GUO M H, XU T X, LIU J J, et al. Attention mechanisms in computer vision: a survey[J]. Computational Visual Media, 2022, 8(3): 331-368 doi: 10.1007/s41095-022-0271-y
    [17] SOYDANER D. Attention mechanism in neural networks: where it comes and where it goes[J]. Neural Computing and Applications, 2022, 34(16): 13371-13385 doi: 10.1007/s00521-022-07366-3
    [18] HU J, SHEN L, SUN G, et al. Squeeze-and-excitation networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 7132-7141
    [19] WOO S, PARK J, LEE J Y, et al. CBAM: Convolutional block attention module[C]//Proceedings of the 15th European Conference. Cham: Springer, 2018: 3-19
    [20] WEN W L, REN W Q, SHI Y H, et al. Video super-resolution via a spatio-temporal alignment network[J]. IEEE Transactions on Image Processing, 2022, 31: 1761-1773 doi: 10.1109/TIP.2022.3146625
    [21] SHI S W, GU J J, XIE L B, et al. Rethinking alignment in video super-resolution transformers[C]//Proceedings of the 36th International Conference on Neural Information Processing Systems. New Orleans: Curran Associates Inc., 2022: 2615
    [22] CABALLERO J, LEDIG C, AITKEN A, et al. Real-time video super-resolution with spatio-temporal networks and motion compensation[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 2848-2857
    [23] WANG L G, GUO Y L, LIN Z P, et al. Learning for video super-resolution through HR optical flow estimation[C]//14th Asian Conference on Computer Vision. Cham: Springer, 2019: 514-529
    [24] XUE T F, CHEN B A, WU J J, et al. Video enhancement with task-oriented flow[J]. International Journal of Computer Vision, 2019, 127(8): 1106-1125 doi: 10.1007/s11263-018-01144-2
    [25] SAJJADI M S M, VEMULAPALLI R, BROWN M. Frame-recurrent video super-resolution[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 6626-6634
    [26] JO Y, OH S W, KANG J, et al. Deep video super-resolution network using dynamic upsampling filters without explicit motion compensation[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 3224-3232
    [27] HASSANIN M, ANWAR S, RADWAN I, et al. Visual attention methods in deep learning: An in-depth survey[J]. Information Fusion, 2024, 108: 102417 doi: 10.1016/j.inffus.2024.102417
    [28] CORDONNIER J B, LOUKAS A, JAGGI M. On the relationship between self-attention and convolutional layers[C]//International Conference on Learning Representations. Addis Ababa: OpenReview. net, 2019
    [29] ZHU X Z, HU H, LIN S, et al. Deformable convNets v2: More deformable, better results[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 9300-9308
    [30] Wang H, Su D, Liu C, et al. Deformable Non-Local Network for VideoSuper-Resolution[J]. IEEE Access, 2019, 7: 177734-177744 doi: 10.1109/ACCESS.2019.2958030
    [31] YING X Y, WANG L G, WANG Y Q, et al. Deformable 3D convolution for video super-resolution[J]. IEEE Signal Processing Letters, 2020, 27: 1500-1504 doi: 10.1109/LSP.2020.3013518
    [32] WANG W, DAI J, CHEN Z, et al. InternImage: Exploring large-scale vision foundation models with deformable convolutions[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver: IEEE, 2023: 14408-14419.
    [33] XIONG Y W, LI Z Q, CHEN Y T, et al. Efficient deformable convNets: Rethinking dynamic and sparse operator for vision applications[C]//Proceedings of the 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2024: 5652-5661
    [34] SHI W Z, CABALLERO J, HUSZÁR F, et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 1874-1883
    [35] WANG J Q, CHEN K, XU R, et al. CARAFE: Content-aware reassembly of features[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 3007-3016
    [36] ZHANG R. Making convolutional networks shift-invariant again[C]//Proceedings of the 36th International Conference on Machine Learning. Long Beach: PMLR, 2019: 7324-7334
    [37] AZULAY A, WEISS Y. Why do deep convolutional networks generalize so poorly to small image transformations[OL]. arXiv preprint arXiv: 1805.12177, 2018
    [38] WEISS K, KHOSHGOFTAAR T M, WANG D D. A survey of transfer learning[J]. Journal of Big Data, 2016, 3: (1): 1-40
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  259
  • HTML全文浏览量:  74
  • PDF下载量:  10
  • 被引次数: 

    0(来源:Crossref)

    0(来源:其他)

出版历程
  • 收稿日期:  2025-01-06
  • 修回日期:  2025-05-22
  • 网络出版日期:  2025-05-26

目录

    /

    返回文章
    返回