留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

海洋盐度卫星L波段一维综合孔径辐射计数字子系统关键性能测试方法

石玥伦 唐月英 韩东浩

石玥伦, 唐月英, 韩东浩. 海洋盐度卫星L波段一维综合孔径辐射计数字子系统关键性能测试方法[J]. 空间科学学报. doi: 10.11728/cjss2026.01.2025-0014
引用本文: 石玥伦, 唐月英, 韩东浩. 海洋盐度卫星L波段一维综合孔径辐射计数字子系统关键性能测试方法[J]. 空间科学学报. doi: 10.11728/cjss2026.01.2025-0014
SHI Yuelun, TANG Yueying, HAN Donghao. Key Performance Test Methods for Digital Subsystem of L-band One-Dimensional Synthetic Aperture Radiometer for Ocean Salinity Satellite(in Chinese). Chinese Journal of Space Science, 2026, 46(1): 128-139 doi: 10.11728/cjss2026.01.2025-0014
Citation: SHI Yuelun, TANG Yueying, HAN Donghao. Key Performance Test Methods for Digital Subsystem of L-band One-Dimensional Synthetic Aperture Radiometer for Ocean Salinity Satellite(in Chinese). Chinese Journal of Space Science, 2026, 46(1): 128-139 doi: 10.11728/cjss2026.01.2025-0014

海洋盐度卫星L波段一维综合孔径辐射计数字子系统关键性能测试方法

doi: 10.11728/cjss2026.01.2025-0014 cstr: 32142.14.cjss.2025-0014
基金项目: 国家自然科学基金项目资助(42206185)
详细信息
    作者简介:
    • 石玥伦 女, 1999年10月出生于北京市, 现为中国科学院大学硕士研究生. 研究专业为电子与通信工程, 主要研究领域为微波辐射计系统测试等. E-mail: syl991018@126.com
    通讯作者:
    • 唐月英 女, 1966年7月生于湖南省怀化市, 现为中国科学院国家空间科学中心正高级工程师, 硕士生导师. 主要研究方向:复杂航天电子技术、FPGA软件技术、系统控制与信号处理. E-mail:tangyueying@mirslab.cn
  • 中图分类号: P715

Key Performance Test Methods for Digital Subsystem of L-band One-Dimensional Synthetic Aperture Radiometer for Ocean Salinity Satellite

  • 摘要: 针对中国首颗海洋盐度卫星主被动探测仪(MICAP) L波段一维综合孔径辐射计分布式数字子系统的高精度测试需求, 本研究聚焦分布式架构下多节点同步、软硬件耦合误差分离等难题. 测试过程中, 利用多机同步触发和FPGA的ILA(Integrated Logic Analyzer)工具, 实现24路AD原始数据对齐, 解决了分布式架构下原始数据无汇聚点的难题; 同时提出硬件性能与整体性能双向印证的测试方法, 完成了软硬件解耦效果的评估. 实测结果显示, 幅度一致性≤0.4 dB、相位一致性≤1°、相关偏置≤–38 dB, 各项指标均符合任务要求. 本研究成果已应用于MICAP工程研制, 为星载分布式数字子系统的性能验证与优化提供了关键技术支撑.

     

  • 图  1  L波段一维综合孔径辐射计数字子系统功能

    Figure  1.  Functional block diagram of the digital subsystem of the L-band one-dimensional synthetic aperture radiometer

    图  2  分布式数字子系统硬件相位一致性、幅度一致性测试环境

    Figure  2.  Phase and amplitude consistency testing environment for distributed subsystem

    图  3  幅度、相位一致性测试方法验证测试环境

    Figure  3.  Verification test environment of amplitude and phase consistency testing methods

    图  4  数字子系统幅度与相位一致性测试环境

    Figure  4.  Amplitude and phase consistency test environment of the digital subsystem

    图  5  数字子系统通道相关偏置测试环境

    Figure  5.  Correlation offset test environment of the digital subsystem

    图  6  科学数据包参数排列

    Figure  6.  Scientific packet parameter arrangement

    图  7  单机$ \mathrm{A} $通道$ 1\text{某次测试} $的相频曲线

    Figure  7.  Phase-frequency curve of Channel 1 of unit A in a test

    图  8  单机A通道1某次测试的幅频曲线

    Figure  8.  Amplitude-frequency curve of Channel 1 of unit A in a test

    图  9  数字子系统通道相位一致性

    Figure  9.  Phase consistency of digital subsystem Channel

    表  1  相位一致性测试方法验证结果

    Table  1.   Verification results of phase consistency testing methods

    第1次测试第2次测试
    两路AD输入信号相位差$ {\delta }_{1}=3{^{\circ}} $$ \delta _{1}^{'}=4{^{\circ}} $
    FFT法测得的相位差$ \Delta \varphi =3.28{^{\circ}} $$ \Delta {\varphi }^{'}=4.29{^{\circ}} $
    互相关法测得的相位差$ \Delta \varphi =3.29{^{\circ}} $$ \Delta {\varphi }^{'}=4.30{^{\circ}} $
    下载: 导出CSV

    表  2  各通道初相位及平均值

    Table  2.   Initial phase of each channel and the average

    通道序号 A1 A2 A3 A4 A5 A6 B1 B2 B3 B4 B5 B6 平均
    初相位/) 112.31 111.92 112.43 112.17 111.81 112.30 111.44 112.37 111.68 111.19 111.76 112.13 111.96
    与平均初相位
    之差/)
    0.35 –0.04 0.47 0.21 –0.15 0.34 –0.52 0.41 –0.28 –0.77 –0.20 0.17
    下载: 导出CSV

    表  3  FFT初相位法相位一致性测试结果

    Table  3.   Phase consistency test results by FFT initial phase method

    通道序号 A1 A2 A3 A4 A5 A6 B1 B2 B3 B4 B5 B6
    5次测试结果平均值/(°) 0. 33 –0.06 0.36 0.19 –0.17 0.31 –0.35 0.31 –0.30 –0.55 –0.22 0.15
    下载: 导出CSV

    表  4  互相关测试方法计算相位一致性结果 [单位: (°)]

    Table  4.   Phase consistency results by cross-correlation test method [unit: (º)]

    通道
    序号
    A2A3A4A5A6B1B2B3B4B5B6
    A10.390.030.130.510.020.680.020.640.880.550.19
    A2-0.420.250.110.370.390.370.240.500.160.21
    A3--0.170.530.050.710.050.660.910.590.21
    A4---0.360.120.540.120.490.740.410.04
    A5----0.480.180.490.130.380.050.33
    A6-----0.660.010.610.860.530.16
    B1-------0.670.050.200.130.51
    B2--------0.610.860.530.16
    B3--------0.250.080.46
    B4---------0.330.70
    B5-----------0.38
    下载: 导出CSV

    表  5  幅度一致性测试结果

    Table  5.   Test results of amplitude consistency

    通道序号A1A2A3A4A5A6B1B2B3B4B5B6
    功率/dBm3.593.563.583.543.473.653.523.673.703.473.603.67
    下载: 导出CSV

    表  6  数字子系统整体幅度一致性测试结果

    Table  6.   Test results of the overall amplitude consistency of digital subsystem

    通道序号123456789101112
    幅度与平均
    值差/dB
    0.050.140.000.170.070.300.010.030.040.130.130.18
    下载: 导出CSV

    表  7  数字子系统相关偏置测试结果 (单位: dB)

    Table  7.   Correlation offset test results of digital subsystem (unit: dB)

    通道序号 1 2 3 4 5 6
    1 –39.56
    2 –39.5
    3 –39.15
    4 –38.77
    5 –39.29
    6
    下载: 导出CSV

    表  8  测试结果汇总

    Table  8.   Summary of test results

    性能项 相位一致性/(°) 幅度一致性/dB 相关偏置/dB
    指标
    要求
    硬件
    性能
    整体
    性能
    指标
    要求
    硬件
    性能
    整体
    性能
    指标
    要求
    整体
    性能
    测试结果 ≤0.91 ≤0.91 ≤0.93 ≤0.4 0.23 0.30 ≤–35 –38
    下载: 导出CSV
  • [1] LIU H, ZHU D, NIU L J, et al. MICAP (Microwave Imager Combined Active and Passive): a new instrument for Chinese ocean salinity satellite[C] // 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Milan, Italy: IEEE, 2015: 184-187
    [2] NIU Lijie, LIU Hao, WU Lin, et al. Development and experimental study on L-band synthetic aperture radiometer prototype for ocean salinity measurement[J]. Journal of Electronics :Times New Roman;">& Information Technology, 2017, 39(8): 1841-1847 (牛立杰, 刘浩, 武林, 等. 面向星载海洋盐度探测应用的L波段综合孔径辐射计原理样机研制与试验研究[J]. 电子与信息学报, 2017, 39(8): 1841-1847 doi: 10.11999/JEIT161233

    NIU Lijie, LIU Hao, WU Lin, et al. Development and experimental study on L-band synthetic aperture radiometer prototype for ocean salinity measurement[J]. Journal of Electronics & Information Technology, 2017, 39(8): 1841-1847 doi: 10.11999/JEIT161233
    [3] ZHANG L J, YIN X B, WANG Z Z, et al. Preliminary analysis of the potential and limitations of MICAP for the retrieval of sea surface salinity[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(9): 2979-2990 doi: 10.1109/JSTARS.2018.2849408
    [4] TONG Xing, NIU Lijie, HAN Donghao, et al. Amplitude calibration method for synthetic aperture radiometer based on cold-sky observation unit[J]. Chinese Journal of Space Science, 2024, 44(5): 832-845 (仝星, 牛立杰, 韩东浩, 等. 基于冷空观测单元的综合孔径微波辐射计幅度定标方法[J]. 空间科学学报, 2024, 44(5): 832-845 doi: 10.11728/cjss2024.05.2023-0131

    TONG Xing, NIU Lijie, HAN Donghao, et al. Amplitude calibration method for synthetic aperture radiometer based on cold-sky observation unit[J]. Chinese Journal of Space Science, 2024, 44(5): 832-845 doi: 10.11728/cjss2024.05.2023-0131
    [5] GUO T S, GUO X, LIU H, et al. Study of the real-time onboard radio frequency interference detection and mitigation strategy for MICAP L-band radiometer[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5304914 doi: 10.1109/tgrs.2022.3205963
    [6] RUF C S, LI J K. A correlated noise calibration standard for interferometric, polarimetric, and autocorrelation microwave radiometers[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(10): 2187-2196 doi: 10.1109/TGRS.2003.815971
    [7] PENG J Z, RUF C S. Calibration method for fully polarimetric microwave radiometers using the correlated noise calibration standard[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(10): 3087-3097 doi: 10.1109/TGRS.2008.2000740
    [8] AUSTERBERRY D, GAIER T, KANGASLAHTI P, et al. Test methodology for the Geostar correlator[C] // 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Milan, Italy: IEEE, 2015: 3473-3476
    [9] PIEPMEIER J R, FOCARDI P, HORGAN K A, et al. SMAP L-band microwave radiometer: instrument design and first year on orbit[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(4): 1954-1966 doi: 10.1109/TGRS.2016.2631978
    [10] LIU J Y, HAN D H, GUO X, et al. Characterization method for digital correlator of interferometric radiometers based on correlated noise source[J]. IEEE Geoscience and Remote Sensing Letters, 2023, 20: 4500905 doi: 10.1109/lgrs.2023.3299292
    [11] LIU Kai, WU Qiongzhi, SUN Lin, et al. A high-precision measure method of multi-channel ADC consistency[J]. Electronic Design Engineering, 2014, 22(19): 86-88,92 (刘楷, 吴琼之, 孙林, 等. 多通道ADC一致性的高精度测量方法[J]. 电子设计工程, 2014, 22(19): 86-88,92 doi: 10.3969/j.issn.1674-6236.2014.19.028

    LIU Kai, WU Qiongzhi, SUN Lin, et al. A high-precision measure method of multi-channel ADC consistency[J]. Electronic Design Engineering, 2014, 22(19): 86-88,92 doi: 10.3969/j.issn.1674-6236.2014.19.028
    [12] TANG Yueying, XU Ke, LIU Peng, et al. Design and realization of an IF digital receiving module for space-borne double-frequency radar altimeter[J]. Electronic Measurement Technology, 2017, 40(4): 15-21 (唐月英, 许可, 刘鹏, 等. 星载双频雷达高度计中频数字接收模块设计及性能测试[J]. 电子测量技术, 2017, 40(4): 15-21 doi: 10.19651/j.cnki.emt.2017.04.004

    TANG Yueying, XU Ke, LIU Peng, et al. Design and realization of an IF digital receiving module for space-borne double-frequency radar altimeter[J]. Electronic Measurement Technology, 2017, 40(4): 15-21 doi: 10.19651/j.cnki.emt.2017.04.004
    [13] ZHENG Shengfeng, CHEN Suming, DI Jinhai, et al. Phase difference measurement of sinusoidal signal based on multi-layer cross-correlation[J]. Journal of Astronautic Metrology and Measurement, 2012, 32(1): 34-40 (郑胜峰, 陈素明, 狄金海, 等. 一种基于多重互相关的相位差测量新方法[J]. 宇航计测技术, 2012, 32(1): 34-40

    ZHENG Shengfeng, CHEN Suming, DI Jinhai, et al. Phase difference measurement of sinusoidal signal based on multi-layer cross-correlation[J]. Journal of Astronautic Metrology and Measurement, 2012, 32(1): 34-40
    [14] Tektronix. Arbitrary Waveform Generators AWG70000B Series Datasheet[EB/OL]. [2025-03-30]. https://www.tek.com/en/products/arbitrary-waveform-generators/awg70000
    [15] DONG Xiaolong, WU Ji, JIANG Jingshan. Analysis and calibration of effects on complex correlations from mutual coupling and imbalance between channels[J]. Acta Electronica Sinica, 2001, 29(7): 947-949 (董晓龙, 吴季, 姜景山. 信道互耦和不平衡度对综合孔径微波辐射计复相关干涉测量的影响分析及其校准[J]. 电子学报, 2001, 29(7): 947-949 doi: 10.3321/j.issn:0372-2112.2001.07.024

    DONG Xiaolong, WU Ji, JIANG Jingshan. Analysis and calibration of effects on complex correlations from mutual coupling and imbalance between channels[J]. Acta Electronica Sinica, 2001, 29(7): 947-949 doi: 10.3321/j.issn:0372-2112.2001.07.024
    [16] 于哲, 刘浩, 牛立杰, 等. 一种用于三阶数字相关器性能测试系统及方法: 中国, 113125883B[P]. 2024-07-09
  • 加载中
图(9) / 表(8)
计量
  • 文章访问数:  264
  • HTML全文浏览量:  30
  • PDF下载量:  10
  • 被引次数: 

    0(来源:Crossref)

    0(来源:其他)

出版历程
  • 收稿日期:  2025-01-14
  • 修回日期:  2025-06-05
  • 网络出版日期:  2025-06-06

目录

    /

    返回文章
    返回