海洋盐度卫星L波段一维综合孔径辐射计数字子系统关键性能测试方法
doi: 10.11728/cjss2026.01.2025-0014 cstr: 32142.14.cjss.2025-0014
Key Performance Test Methods for Digital Subsystem of L-band One-Dimensional Synthetic Aperture Radiometer for Ocean Salinity Satellite
-
摘要: 针对中国首颗海洋盐度卫星主被动探测仪(MICAP) L波段一维综合孔径辐射计分布式数字子系统的高精度测试需求, 本研究聚焦分布式架构下多节点同步、软硬件耦合误差分离等难题. 测试过程中, 利用多机同步触发和FPGA的ILA(Integrated Logic Analyzer)工具, 实现24路AD原始数据对齐, 解决了分布式架构下原始数据无汇聚点的难题; 同时提出硬件性能与整体性能双向印证的测试方法, 完成了软硬件解耦效果的评估. 实测结果显示, 幅度一致性≤0.4 dB、相位一致性≤1°、相关偏置≤–38 dB, 各项指标均符合任务要求. 本研究成果已应用于MICAP工程研制, 为星载分布式数字子系统的性能验证与优化提供了关键技术支撑.Abstract: The Microwave Imager Combined Active and Passive (MICAP), the first ocean salinity detection satellite in China, realizes the global scale measurement of key geophysical elements such as ocean salinity and soil moisture through multi-factor fusion inversion. The high-sensitivity L-band one-dimensional Synthetic Aperture Radiometer (SAR), serving as the primary detector for MICAP, features a digitally implemented subsystem with a distributed architecture that constitutes the core module of the radiometer's receiving chain. The subsystem’s key performance indicators directly affect the measurement accuracy of both the radiometer and MICAP in detecting ocean salinity, thus the mission imposes stringent performance requirements. This study addresses the high-precision performance testing needs of the distributed digital subsystem, focusing on challenges such as synchronized multi-node data acquisition under a distributed framework and separation of hardware-software coupling performance. The testing method employs multi-device synchronous triggering and the Integrated Logic Analyzer (ILA) tool embedded in the FPGA of front-end data acquisition units to achieve synchronous capture of original AD sampling data from 24 channels across multiple individual units. This solution resolves the absence of original data aggregation points among multiple front-end data acquisition units in the distributed architecture. Furthermore, the study proposes a bidirectional verification framework for both hardware and system-level performance. The hardware performance is tested by analyzing raw acquired data, while the integrated hardware-software performance is evaluated by processing the end-to-end scientific data packets. This methodology achieves decoupled testing of the hardware and software performance of the distributed digital subsystem. The actual test results, including amplitude consistency ≤0.4 dB, phase consistency ≤1º, and correlation bias ≤–38 dB, meet the mission's specified requirements. The research results have been applied to the MICAP engineering development, providing critical technical support for the performance verification and optimization of the distributed digital subsystem of ocean salinity satellite synthetic aperture radiometer.
-
表 1 相位一致性测试方法验证结果
Table 1. Verification results of phase consistency testing methods
第1次测试 第2次测试 两路AD输入信号相位差 $ {\delta }_{1}=3{^{\circ}} $ $ \delta _{1}^{'}=4{^{\circ}} $ FFT法测得的相位差 $ \Delta \varphi =3.28{^{\circ}} $ $ \Delta {\varphi }^{'}=4.29{^{\circ}} $ 互相关法测得的相位差 $ \Delta \varphi =3.29{^{\circ}} $ $ \Delta {\varphi }^{'}=4.30{^{\circ}} $ 表 2 各通道初相位及平均值
Table 2. Initial phase of each channel and the average
通道序号 A1 A2 A3 A4 A5 A6 B1 B2 B3 B4 B5 B6 平均 初相位/(°) 112.31 111.92 112.43 112.17 111.81 112.30 111.44 112.37 111.68 111.19 111.76 112.13 111.96 与平均初相位
之差/(°)0.35 –0.04 0.47 0.21 –0.15 0.34 –0.52 0.41 –0.28 –0.77 –0.20 0.17 - 表 3 FFT初相位法相位一致性测试结果
Table 3. Phase consistency test results by FFT initial phase method
通道序号 A1 A2 A3 A4 A5 A6 B1 B2 B3 B4 B5 B6 5次测试结果平均值/(°) 0. 33 –0.06 0.36 0.19 –0.17 0.31 –0.35 0.31 –0.30 –0.55 –0.22 0.15 表 4 互相关测试方法计算相位一致性结果 [单位: (°)]
Table 4. Phase consistency results by cross-correlation test method [unit: (º)]
通道
序号A2 A3 A4 A5 A6 B1 B2 B3 B4 B5 B6 A1 0.39 0.03 0.13 0.51 0.02 0.68 0.02 0.64 0.88 0.55 0.19 A2 - 0.42 0.25 0.11 0.37 0.39 0.37 0.24 0.50 0.16 0.21 A3 - - 0.17 0.53 0.05 0.71 0.05 0.66 0.91 0.59 0.21 A4 - - - 0.36 0.12 0.54 0.12 0.49 0.74 0.41 0.04 A5 - - - - 0.48 0.18 0.49 0.13 0.38 0.05 0.33 A6 - - - - - 0.66 0.01 0.61 0.86 0.53 0.16 B1 - - - -- - - 0.67 0.05 0.20 0.13 0.51 B2 - - - - - -- - 0.61 0.86 0.53 0.16 B3 - - - - - - - - 0.25 0.08 0.46 B4 - - - - - - - - - 0.33 0.70 B5 - - - -- - - - - - - 0.38 表 5 幅度一致性测试结果
Table 5. Test results of amplitude consistency
通道序号 A1 A2 A3 A4 A5 A6 B1 B2 B3 B4 B5 B6 功率/dBm 3.59 3.56 3.58 3.54 3.47 3.65 3.52 3.67 3.70 3.47 3.60 3.67 表 6 数字子系统整体幅度一致性测试结果
Table 6. Test results of the overall amplitude consistency of digital subsystem
通道序号 1 2 3 4 5 6 7 8 9 10 11 12 幅度与平均
值差/dB0.05 0.14 0.00 0.17 0.07 0.30 0.01 0.03 0.04 0.13 0.13 0.18 表 7 数字子系统相关偏置测试结果 (单位: dB)
Table 7. Correlation offset test results of digital subsystem (unit: dB)
通道序号 1 2 3 4 5 6 1 – –39.56 – – – – 2 – – –39.5 – – – 3 – – – –39.15 – – 4 – – – – –38.77 – 5 – – – – – –39.29 6 – – – – – – 表 8 测试结果汇总
Table 8. Summary of test results
性能项 相位一致性/(°) 幅度一致性/dB 相关偏置/dB 指标
要求硬件
性能整体
性能指标
要求硬件
性能整体
性能指标
要求整体
性能测试结果 ≤0.91 ≤0.91 ≤0.93 ≤0.4 0.23 0.30 ≤–35 –38 -
[1] LIU H, ZHU D, NIU L J, et al. MICAP (Microwave Imager Combined Active and Passive): a new instrument for Chinese ocean salinity satellite[C] // 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Milan, Italy: IEEE, 2015: 184-187 [2] NIU Lijie, LIU Hao, WU Lin, et al. Development and experimental study on L-band synthetic aperture radiometer prototype for ocean salinity measurement[J]. Journal of Electronics :Times New Roman;">& Information Technology, 2017, 39(8): 1841-1847 (牛立杰, 刘浩, 武林, 等. 面向星载海洋盐度探测应用的L波段综合孔径辐射计原理样机研制与试验研究[J]. 电子与信息学报, 2017, 39(8): 1841-1847 doi: 10.11999/JEIT161233NIU Lijie, LIU Hao, WU Lin, et al. Development and experimental study on L-band synthetic aperture radiometer prototype for ocean salinity measurement[J]. Journal of Electronics & Information Technology, 2017, 39(8): 1841-1847 doi: 10.11999/JEIT161233 [3] ZHANG L J, YIN X B, WANG Z Z, et al. Preliminary analysis of the potential and limitations of MICAP for the retrieval of sea surface salinity[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(9): 2979-2990 doi: 10.1109/JSTARS.2018.2849408 [4] TONG Xing, NIU Lijie, HAN Donghao, et al. Amplitude calibration method for synthetic aperture radiometer based on cold-sky observation unit[J]. Chinese Journal of Space Science, 2024, 44(5): 832-845 (仝星, 牛立杰, 韩东浩, 等. 基于冷空观测单元的综合孔径微波辐射计幅度定标方法[J]. 空间科学学报, 2024, 44(5): 832-845 doi: 10.11728/cjss2024.05.2023-0131TONG Xing, NIU Lijie, HAN Donghao, et al. Amplitude calibration method for synthetic aperture radiometer based on cold-sky observation unit[J]. Chinese Journal of Space Science, 2024, 44(5): 832-845 doi: 10.11728/cjss2024.05.2023-0131 [5] GUO T S, GUO X, LIU H, et al. Study of the real-time onboard radio frequency interference detection and mitigation strategy for MICAP L-band radiometer[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5304914 doi: 10.1109/tgrs.2022.3205963 [6] RUF C S, LI J K. A correlated noise calibration standard for interferometric, polarimetric, and autocorrelation microwave radiometers[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(10): 2187-2196 doi: 10.1109/TGRS.2003.815971 [7] PENG J Z, RUF C S. Calibration method for fully polarimetric microwave radiometers using the correlated noise calibration standard[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(10): 3087-3097 doi: 10.1109/TGRS.2008.2000740 [8] AUSTERBERRY D, GAIER T, KANGASLAHTI P, et al. Test methodology for the Geostar correlator[C] // 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Milan, Italy: IEEE, 2015: 3473-3476 [9] PIEPMEIER J R, FOCARDI P, HORGAN K A, et al. SMAP L-band microwave radiometer: instrument design and first year on orbit[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(4): 1954-1966 doi: 10.1109/TGRS.2016.2631978 [10] LIU J Y, HAN D H, GUO X, et al. Characterization method for digital correlator of interferometric radiometers based on correlated noise source[J]. IEEE Geoscience and Remote Sensing Letters, 2023, 20: 4500905 doi: 10.1109/lgrs.2023.3299292 [11] LIU Kai, WU Qiongzhi, SUN Lin, et al. A high-precision measure method of multi-channel ADC consistency[J]. Electronic Design Engineering, 2014, 22(19): 86-88,92 (刘楷, 吴琼之, 孙林, 等. 多通道ADC一致性的高精度测量方法[J]. 电子设计工程, 2014, 22(19): 86-88,92 doi: 10.3969/j.issn.1674-6236.2014.19.028LIU Kai, WU Qiongzhi, SUN Lin, et al. A high-precision measure method of multi-channel ADC consistency[J]. Electronic Design Engineering, 2014, 22(19): 86-88,92 doi: 10.3969/j.issn.1674-6236.2014.19.028 [12] TANG Yueying, XU Ke, LIU Peng, et al. Design and realization of an IF digital receiving module for space-borne double-frequency radar altimeter[J]. Electronic Measurement Technology, 2017, 40(4): 15-21 (唐月英, 许可, 刘鹏, 等. 星载双频雷达高度计中频数字接收模块设计及性能测试[J]. 电子测量技术, 2017, 40(4): 15-21 doi: 10.19651/j.cnki.emt.2017.04.004TANG Yueying, XU Ke, LIU Peng, et al. Design and realization of an IF digital receiving module for space-borne double-frequency radar altimeter[J]. Electronic Measurement Technology, 2017, 40(4): 15-21 doi: 10.19651/j.cnki.emt.2017.04.004 [13] ZHENG Shengfeng, CHEN Suming, DI Jinhai, et al. Phase difference measurement of sinusoidal signal based on multi-layer cross-correlation[J]. Journal of Astronautic Metrology and Measurement, 2012, 32(1): 34-40 (郑胜峰, 陈素明, 狄金海, 等. 一种基于多重互相关的相位差测量新方法[J]. 宇航计测技术, 2012, 32(1): 34-40ZHENG Shengfeng, CHEN Suming, DI Jinhai, et al. Phase difference measurement of sinusoidal signal based on multi-layer cross-correlation[J]. Journal of Astronautic Metrology and Measurement, 2012, 32(1): 34-40 [14] Tektronix. Arbitrary Waveform Generators AWG70000B Series Datasheet[EB/OL]. [2025-03-30]. https://www.tek.com/en/products/arbitrary-waveform-generators/awg70000 [15] DONG Xiaolong, WU Ji, JIANG Jingshan. Analysis and calibration of effects on complex correlations from mutual coupling and imbalance between channels[J]. Acta Electronica Sinica, 2001, 29(7): 947-949 (董晓龙, 吴季, 姜景山. 信道互耦和不平衡度对综合孔径微波辐射计复相关干涉测量的影响分析及其校准[J]. 电子学报, 2001, 29(7): 947-949 doi: 10.3321/j.issn:0372-2112.2001.07.024DONG Xiaolong, WU Ji, JIANG Jingshan. Analysis and calibration of effects on complex correlations from mutual coupling and imbalance between channels[J]. Acta Electronica Sinica, 2001, 29(7): 947-949 doi: 10.3321/j.issn:0372-2112.2001.07.024 [16] 于哲, 刘浩, 牛立杰, 等. 一种用于三阶数字相关器性能测试系统及方法: 中国, 113125883B[P]. 2024-07-09 -
-
石玥伦 女, 1999年10月出生于北京市, 现为中国科学院大学硕士研究生. 研究专业为电子与通信工程, 主要研究领域为微波辐射计系统测试等. E-mail:
下载: