留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于气辉观测的中国南方电离层赤道等离子体泡标准数据集

钟佳 邹自明 徐寄遥 吴坤 孙龙昌 袁韦 胡晓彦

钟佳, 邹自明, 徐寄遥, 吴坤, 孙龙昌, 袁韦, 胡晓彦. 基于气辉观测的中国南方电离层赤道等离子体泡标准数据集[J]. 空间科学学报, 2026, 46(1): 254-264. doi: 10.11728/cjss2026.01.2025-0097
引用本文: 钟佳, 邹自明, 徐寄遥, 吴坤, 孙龙昌, 袁韦, 胡晓彦. 基于气辉观测的中国南方电离层赤道等离子体泡标准数据集[J]. 空间科学学报, 2026, 46(1): 254-264. doi: 10.11728/cjss2026.01.2025-0097
ZHONG Jia, ZOU Ziming, XU Jiyao, WU Kun, SUN Longchang, YUAN Wei, HU Xiaoyan. Standard Dataset of Ionospheric Equatorial Plasma Bubbles over Southern China Based on Airglow Observations (in Chinese). Chinese Journal of Space Science, 2026, 46(1): 254-264 doi: 10.11728/cjss2026.01.2025-0097
Citation: ZHONG Jia, ZOU Ziming, XU Jiyao, WU Kun, SUN Longchang, YUAN Wei, HU Xiaoyan. Standard Dataset of Ionospheric Equatorial Plasma Bubbles over Southern China Based on Airglow Observations (in Chinese). Chinese Journal of Space Science, 2026, 46(1): 254-264 doi: 10.11728/cjss2026.01.2025-0097

基于气辉观测的中国南方电离层赤道等离子体泡标准数据集

doi: 10.11728/cjss2026.01.2025-0097 cstr: 32142.14.cjss.2025-0097
详细信息
    作者简介:
    • 钟佳 男, 1987年出生, 博士, 中国科学院国家空间科学中心项目高级工程师, 主要研究方向为空间天气数据挖掘与机器学习建模、科学可视化技术. E-mail: zhongjia@nssc.ac.cn
    • 邹自明 男, 1971年出生, 博士, 中国科学院国家空间科学中心研究员、国家空间科学数据中心主任、中国科学院大学博士生导师, 长期从事空间科学与数据科学交叉领域研究. E-mail: mzou@nssc.ac.cn
    • 徐寄遥 男, 1959年出生, 博士, 中国科学院国家空间科学中心研究员、博士生导师, 国家杰出青年基金获得者, 现任国家重大科技基础设施“空间环境地基综合监测网——子午工程II期”总工程师. 长期从事中高层大气物理学研究. E-mail: jyxu@spaceweather.ac.cn
  • 中图分类号: P352

Standard Dataset of Ionospheric Equatorial Plasma Bubbles over Southern China Based on Airglow Observations

  • 摘要: 研究构建了首个基于气辉观测的电离层等离子体泡标准数据集, 包含等离子体泡事件数据与精确轮廓标注数据. 该数据集源自云南曲靖站630 nm波段气辉成像仪历时一个完整太阳活动周(2012-2022年)的连续观测, 所有原始数据均经过图像增强、方位校正、几何畸变校正及地理坐标投影等标准化预处理, 并由专家团队完成等离子体泡事件识别及轮廓标注. 该数据集的时间分辨率高达3 min, 系统收录了不同太阳活动强度下的等离子体泡事件样本, 涵盖I形与Y形等多种典型形态. 本数据集为开发高精度监督式人工智能算法提供了高质量基准数据, 有助于促进基于气辉成像的电离层等离子体泡自动化检测与形态演化研究.

     

  • 图  1  曲靖站 (红色点) 全天空气辉成像仪160°有效观测视场角覆盖空间范围

    Figure  1.  Spatial coverage of the 160° effective Field-of-View (FOV) for the all-sky airglow imager at Qujing Station (Red dot)

    图  2  全天空气辉成像仪实物[21]

    Figure  2.  Picture of the all-sky airglow imager

    图  3  全天空气辉成像仪内部结构[21]

    Figure  3.  All-sky airglow imager internal structure

    图  4  全天空气辉成像仪原始观测数据

    Figure  4.  Raw observational data of the all-sky airglow imager

    图  5  数据集加工流程

    Figure  5.  Dataset processing pipeline

    图  6  曲靖站2014年3月1日23:42:01 (UTC+8) 的等离子体泡事件图像

    Figure  6.  Plasma bubble event image observed at Qujing Station at 23:42:01 (UTC+8) on 1 March 2014

    图  7  简单I形等离子体泡事件的轮廓标注. (a) 待标注的等离子体泡观测图像, (b)等离子体泡掩膜图像

    Figure  7.  Contour annotation of a simple I-shaped plasma bubble event. (a) Observation image of plasma bubble to be annotated, (b) mask image of plasma bubble

    图  8  具有复杂分叉结构的Y形等离子体泡事件轮廓标注. (a) 待标注的等离子体泡观测图像, (b)等离子体泡掩膜图像

    Figure  8.  Contour annotation of a Y-shaped plasma bubble event with complex bifurcation structure. (a) Observation image of plasma bubble to be annotated, (b) mask image of plasma bubble

    图  9  多个I形与Y形离子体泡事件轮廓标注. (a) 待标注的等离子体泡观测图像, (b)等离子体泡掩膜图像

    Figure  9.  Contour annotation of multiple I-shaped and Y-shaped plasma bubble events. (a) Observation image of plasma bubble to be annotated, (b) mask image of plasma bubble

    图  10  等离子体泡事件轮廓标注文件

    Figure  10.  Contour annotation file of plasma bubble events

    图  11  等离子体泡标准数据集文件组织形式

    Figure  11.  File organization format of plasma bubble standard dataset

    图  12  等离子体泡样本逐年逐月分布与太阳活动水平的关系[25]

    Figure  12.  Relationship between interannual and monthly distributions of plasma bubble samples and solar activity levels

    图  13  等离子体泡图像数量年均值与太阳射电流量年均值的关系

    Figure  13.  Relationship between the annual mean of EPB number image and the annual mean of solar flux

    表  1  曲靖台站不同年份观测夜晚与气辉观测图像及等离子体泡样本分布

    Table  1.   Distribution of observation nights, airglow observation images and plasma bubble samples at Qujing Station in different years

    Year Observation nights Clear nights Images Good quality images EPB images
    2012 291 108 43389 13639 474
    2013 347 132 58441 16012 799
    2014 357 145 68662 18066 1893
    2015 360 121 75368 19112 889
    2016 323 112 65849 18012 99
    2017 341 110 71820 17739 0
    2018 313 129 64227 19510 21
    2019 294 133 60604 18701 0
    2020 313 134 62052 17150 25
    2021 363 135 77322 20012 20
    2022 355 133 75641 20124 444
    Total 3657 1392 723375 198077 4664
    下载: 导出CSV
  • [1] OTT E. Theory of Rayleigh-Taylor bubbles in the equatorial ionosphere[J]. Journal of Geophysical Research: Space Physics, 1978, 83(A5): 2066-2070 doi: 10.1029/JA083iA05p02066
    [2] WEBER E J, BUCHAU J, EATHER R H, et al. North-south aligned equatorial airglow depletions[J]. Journal of Geophysical Research: Space Physics, 1978, 83(A2): 712 doi: 10.1029/JA083iA02p00712
    [3] KELLEY M C. The Earth’s Ionosphere: Plasma Physics and Electrodynamics, Second Edition[M]. Boston: Academic Press, c2009. Hardback ISBN: 9780120884254
    [4] AGGSON T L, LAAKSO H, MAYNARD N C, et al. In situ observations of bifurcation of equatorial ionospheric plasma depletions[J]. Journal of Geophysical Research: Space Physics, 1996, 101(A3): 5125-5132 doi: 10.1029/95ja03837
    [5] IMOÇIN E, INYURT S, TEMUÇIN H, et al. Investigation of equatorial plasma bubble irregularities under different geomagnetic conditions during the equinoxes and the occurrence of plasma bubble suppression[J]. Acta Astronautica, 2020, 177: 341-350 doi: 10.1016/j.actaastro.2020.08.007
    [6] WOODMAN R F, LA HOZ C. Radar observations of F region equatorial irregularities[J]. Journal of Geophysical Research, 1976, 81(31): 5447-5466 doi: 10.1029/JA081i031p05447
    [7] WOODMAN R F. Spread F-an old equatorial aeronomy problem finally resolved[J]. Annales Geophysicae, 2009, 27(5): 1915-1934 doi: 10.5194/angeo-27-1915-2009
    [8] MENDILLO M, BAUMGARDNER J. Airglow characteristics of equatorial plasma depletions[J]. Journal of Geophysical Research: Space Physics, 1982, 87(A9): 7641-7652 doi: 10.1029/JA087iA09p07641
    [9] SAHAI Y, FAGUNDES P R, BITTENCOURT J A. Transequatorial F-region ionospheric plasma bubbles: solar cycle effects[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2000, 62(15): 1377-1383 doi: 10.1016/S1364-6826(00)00179-6
    [10] KELLEY M C, MAKELA J J, LEDVINA B M, et al. Observations of equatorial spread-F from Haleakala, Hawaii[J]. Geophysical Research Letters, 2002, 29(20): 2003 doi: 10.1029/2002GL015509
    [11] MAKELA J J, LEDVINA B M, KELLEY M C, et al. Analysis of the seasonal variations of equatorial plasma bubble occurrence observed from Haleakala, Hawaii[J]. Annales Geophysicae, 2004, 22(9): 3109-3121 doi: 10.5194/angeo-22-3109-2004
    [12] TAORI A, SINDHYA A. Measurements of equatorial plasma depletion velocity using 630 nm airglow imaging over a low-latitude Indian station[J]. Journal of Geophysical Research: Space Physics, 2014, 119(1): 396-401 doi: 10.1002/2013JA019465
    [13] NARAYANAN V L, GURUBARAN S, SHINY M B B, et al. Some new insights of the characteristics of equatorial plasma bubbles obtained from Indian region[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2017, 156: 80 doi: 10.1016/j.jastp.2017.03.006
    [14] WANG C. New chains of space weather monitoring stations in China[J]. Space Weather, 2010, 8(8): S08001 doi: 10.1029/2010SW000603
    [15] LI Q Z, XU J Y, GUSMAN A R, et al. Upper-atmosphere responses to the 2022 Hunga Tonga-Hunga Ha’apai volcanic eruption via acoustic gravity waves and air-sea interaction[J]. Atmospheric Chemistry and Physics, 2024, 24(14): 8343-8361 doi: 10.5194/acp-24-8343-2024
    [16] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90 doi: 10.1145/3065386
    [17] SMIRNOV E A, TIMOSHENKO D M, ANDRIANOV S N. Comparison of regularization methods for ImageNet classification with deep convolutional neural networks[J]. AASRI Procedia, 2014, 6: 89-94 doi: 10.1016/j.aasri.2014.05.013
    [18] LIU L, OUYANG W L, WANG X G, et al. Deep learning for generic object detection: a survey[J]. International Journal of Computer Vision, 2020, 128(2): 261-318 doi: 10.1007/s11263-019-01247-4
    [19] LAI C, XU J Y, YUE J, et al. Automatic extraction of gravity waves from all-sky airglow image based on machine learning[J]. Remote Sensing, 2019, 11(13): 1516 doi: 10.3390/rs11131516
    [20] LAI C, XU J Y, LIN Z S, et al. Statistical characteristics of nighttime medium-scale traveling ionospheric disturbances from 10-years of airglow observation by the machine learning method[J]. Space Weather, 2023, 21(5): e2023SW- 003430 doi: 10.1029/2023SW003430
    [21] SUN Longchang. Study on Low- and Mid-Latitudinal Ionospheric Irregularity Based on Ground-Based and Satellite Observations[D]. Beijing: University of Chinese Academy of Sciences (National Space Science Center, Chinese Academy of Sciences), 2017: 47-48
    [22] GARCIA F J, TAYLOR M J, KELLEY M C. Two-dimensional spectral analysis of mesospheric airglow image data[J]. Applied Optics, 1997, 36(29): 7374-7385 doi: 10.1364/AO.36.007374
    [23] HUANG C Y, BURKE W J, MACHUZAK J S, et al. Equatorial plasma bubbles observed by DMSP satellites during a full solar cycle: toward a global climatology[J]. Journal of Geophysical Research: Space Physics, 2002, 107(A12): 1434 doi: 10.1029/2002JA009452
    [24] WU K, XU J Y, ZHU Y J, et al. Occurrence characteristics of branching structures in equatorial plasma bubbles: a statistical study based on all-sky imagers in China[J]. Earth and Planetary Physics, 2021, 5(5): 407-415 doi: 10.26464/epp2021044
    [25] ZHONG J, ZOU Z M, WU K, et al. Automatic detection and feature extraction of equatorial plasma bubbles from all-sky airglow image based on machine learning[J]. Space Weather, 2025, 23(5): e2025SW004336 doi: 10.1029/2025SW004336
    [26] HAASE J S, DAUTERMANN T, TAYLOR M J, et al. Propagation of plasma bubbles observed in Brazil from GPS and airglow data[J]. Advances in Space Research, 2011, 47(10): 1758-1776 doi: 10.1016/j.asr.2010.09.025
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  654
  • HTML全文浏览量:  208
  • PDF下载量:  18
  • 被引次数: 

    0(来源:Crossref)

    0(来源:其他)

出版历程
  • 收稿日期:  2025-06-21
  • 修回日期:  2025-10-22
  • 网络出版日期:  2025-12-16

目录

    /

    返回文章
    返回