留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于气辉观测的中国南方电离层赤道等离子体泡标准数据集

钟佳 邹自明 徐寄遥 吴坤 孙龙昌 袁韦 胡晓彦

钟佳, 邹自明, 徐寄遥, 吴坤, 孙龙昌, 袁韦, 胡晓彦. 基于气辉观测的中国南方电离层赤道等离子体泡标准数据集[J]. 空间科学学报. doi: 10.11728/cjss2026.01.2025-0097
引用本文: 钟佳, 邹自明, 徐寄遥, 吴坤, 孙龙昌, 袁韦, 胡晓彦. 基于气辉观测的中国南方电离层赤道等离子体泡标准数据集[J]. 空间科学学报. doi: 10.11728/cjss2026.01.2025-0097
ZHONG Jia, ZOU Ziming, XU Jiyao, WU Kun, SUN Longchang, YUAN Wei, HU Xiaoyan. Standard Dataset of Ionospheric Equatorial Plasma Bubbles over Southern China Based on Airglow Observations (in Chinese). Chinese Journal of Space Science, 2026, 46(1): 1-12 doi: 10.11728/cjss2026.01.2025-0097
Citation: ZHONG Jia, ZOU Ziming, XU Jiyao, WU Kun, SUN Longchang, YUAN Wei, HU Xiaoyan. Standard Dataset of Ionospheric Equatorial Plasma Bubbles over Southern China Based on Airglow Observations (in Chinese). Chinese Journal of Space Science, 2026, 46(1): 1-12 doi: 10.11728/cjss2026.01.2025-0097

基于气辉观测的中国南方电离层赤道等离子体泡标准数据集

doi: 10.11728/cjss2026.01.2025-0097 cstr: 32142.14.cjss.2025-0097
详细信息
    作者简介:
    • 钟佳 男, 1987年出生, 博士, 现为中国科学院国家空间科学中心项目高级工程师, 主要研究方向为空间天气数据挖掘与机器学习建模、科学可视化技术. E-mail: zhongjia@nssc.ac.cn
    • 邹自明 男, 1971年出生, 博士, 现为中国科学院国家空间科学中心研究员、国家空间科学数据中心主任、中国科学院大学博士生导师, 长期从事空间科学与数据科学交叉领域研究, 在科学数据治理理论、标准研制、空间信息组织与互操作、日地空间大数据系统工程、空间天气领域数据挖掘与知识发现等方面开展研究. E-mail: mzou@nssc.ac.cn
    • 徐寄遥 男, 1959年出生, 博士, 现为中国科学院国家空间科学中心研究员、博士生导师, 国家杰出青年基金获得者, 现任国家重大科技基础设施“空间环境地基综合监测网——子午工程II期”总工程师 . 长期从事中高层大气物理学研究, 主要方向包括大气光化学/动力学建模、遥感探测技术研发及信息处理方法. E-mail: jyxu@spaceweather.ac.cn
  • 中图分类号: P352

Standard Dataset of Ionospheric Equatorial Plasma Bubbles over Southern China Based on Airglow Observations

  • 摘要: 气辉成像观测凭借其高时空分辨率及大范围连续监测能力, 为研究电离层赤道等离子体泡的水平精细结构及其演化特征提供了重要手段. 然而, 当前缺乏高质量、专业标注的等离子体泡数据集, 严重制约了监督式人工智能算法在该领域的应用研究. 为此, 研究构建了首个基于气辉观测的电离层等离子体泡标准数据集, 包含等离子体泡事件数据与精确轮廓标注数据. 该数据集源自云南曲靖站630 nm波段气辉成像仪历时一个完整太阳活动周(2012-2022年)的连续观测, 所有原始数据均经过图像增强、方位校正、几何畸变校正及地理坐标投影等标准化预处理, 并由专家团队完成等离子体泡事件识别及轮廓标注. 该数据集的时间分辨率高达3 min, 系统收录了不同太阳活动强度下的等离子体泡事件样本, 涵盖I型与Y型等多种典型形态. 本数据集为开发高精度监督式人工智能算法提供了高质量基准数据, 有助于促进基于气辉成像的电离层等离子体泡自动化检测与形态演化研究.

     

  • 图  1  曲靖站 (红色点) 全天空气辉成像仪$ {\mathbf{160}}^{{^{\circ}}} $有效观测视场角覆盖空间范围

    Figure  1.  Spatial coverage of the 160°effective Field-of-View (FOV) for the all-sky airglow imager at Qujing Station (Red dot)

    图  2  全天空气辉成像仪实物[22]

    Figure  2.  Picture of the all-sky airglow imager

    图  3  全天空气辉成像仪内部结构[22]

    Figure  3.  All-sky airglow imager internal structure

    图  4  全天空气辉成像仪原始观测数据

    Figure  4.  Raw observational data from the all-sky airglow imager

    图  5  数据集加工流程

    Figure  5.  Dataset processing pipeline

    图  6  曲靖站2014年3月1日23:42:01 (UTC+8) 的等离子体泡事件图像

    Figure  6.  Plasma bubble event image observed at Qujing Station on 1 March 2014 at 23:42:01 (UTC+8)

    图  7  简单I型等离子体泡事件的轮廓标注. (a) 待标注的等离子体泡观测图像, (b)等离子体泡掩膜图像

    Figure  7.  Contour annotation of a simple I-shaped plasma bubble event. (a) Observation image of plasma bubble to be annotated, (b) mask image of plasma bubble

    图  8  具有复杂分叉结构的Y型等离子体泡事件轮廓标注. (a) 待标注的等离子体泡观测图像, (b)等离子体泡掩膜图像

    Figure  8.  Contour annotation of a Y-shaped plasma bubble event with complex bifurcation structure. (a) Observation image of plasma bubble to be annotated, (b) mask image of plasma bubble

    图  9  多个I型与Y型离子体泡事件轮廓标注. (a) 待标注的等离子体泡观测图像, (b)等离子体泡掩膜图像

    Figure  9.  Contour annotation of multiple I-shaped and Y-shaped plasma bubble events . (a) Observation image of plasma bubble to be annotated, (b) mask image of plasma bubble

    图  10  等离子体泡事件轮廓标注文件

    Figure  10.  Contour annotation file of plasma bubble events

    图  11  等离子体泡标准数据集文件组织形式

    Figure  11.  File organization format of plasma bubble standard dataset

    图  12  等离子体泡样本逐年逐月分布与太阳活动水平的关系[26].

    Figure  12.  Relationship between interannual and monthly distributions of plasma bubble samples and solar activity levels

    图  13  等离子体泡图像数量年均值与太阳射电流量年均值的关系

    Figure  13.  Relationship between the annual mean number of EPB images and the annual mean solar flux

    表  1  曲靖台站不同年份观测夜晚与气辉观测图像及等离子体泡样本分布

    Table  1.   Distribution of observation nights, airglow observation images and plasma bubble samples at Qujing Station in different years

    YearObservation nightsClear nightsNo. of imagesNo. of good quality imagesNo. of EPB images
    20122911084338913639474
    20133471325844116012799
    201435714568662180661893
    20153601217536819112889
    2016323112658491801299
    201734111071820177390
    2018313129642271951021
    201929413360604187010
    2020313134620521715025
    2021363135773222001220
    20223551337564120124444
    Total365713927233751980774664
    下载: 导出CSV
  • [1] OTT E. Theory of Rayleigh-Taylor bubbles in the equatorial ionosphere[J]. Journal of Geophysical Research: Space Physics, 1978, 83(A5): 2066-2070. doi: 10.1029/JA083iA05p02066
    [2] WEBER E J, BUCHAU J, EATHER R H, et al. North-south aligned equatorial airglow depletions[J]. Journal of Geophysical Research: Space Physics, 1978, 83(A2): 712-716. doi: 10.1029/JA083iA02p00712
    [3] KELLEY M C. The Earth’s ionosphere: Plasma physics and electrodynamics, Second Edition[M]. Boston: Academic Press, c2009. Hardback ISBN: 9780120884254.
    [4] AGGSON T L, LAAKSO H, MAYNARD N C, et al. In situ observations of bifurcation of equatorial ionospheric plasma depletions[J]. Journal of Geophysical Research: Space Physics, 1996, 101(A3): 5125-5132. doi: 10.1029/95ja03837
    [5] IMOÇIN E, INYURT S, TEMUÇIN H, et al. Investigation of equatorial plasma bubble irregularities under different geomagnetic conditions during the equinoxes and the occurrence of plasma bubble suppression[J]. Acta Astronautica, 2020, 177: 341-350. doi: 10.1016/j.actaastro.2020.08.007
    [6] WOODMAN R F, LA HOZ C. Radar observations of F region equatorial irregularities[J]. Journal of Geophysical Research, 1976, 81(31): 5447-5466. doi: 10.1029/JA081i031p05447
    [7] WOODMAN R F. Spread F-an old equatorial aeronomy problem finally resolved?[J]. Annales Geophysicae, 2009, 27(5): 1915-1934. doi: 10.5194/angeo-27-1915-2009
    [8] MENDILLO M, BAUMGARDNER J. Airglow characteristics of equatorial plasma depletions[J]. Journal of Geophysical Research: Space Physics, 1982, 87(A9): 7641-7652. doi: 10.1029/JA087iA09p07641
    [9] SAHAI Y, FAGUNDES P R, BITTENCOURT J A. Transequatorial F-region ionospheric plasma bubbles: solar cycle effects[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2000, 62(15): 1377-1383. doi: 10.1016/S1364-6826(00)00179-6
    [10] KELLEY M C, MAKELA J J, LEDVINA B M, et al. Observations of equatorial spread-F from Haleakala, Hawaii[J]. Geophysical Research Letters, 2002, 29(20): 2003. doi: 10.1029/2002GL015509
    [11] MAKELA J J, LEDVINA B M, KELLEY M C, et al. Analysis of the seasonal variations of equatorial plasma bubble occurrence observed from Haleakala, Hawaii[J]. Annales Geophysicae, 2004, 22(9): 3109-3121 doi: 10.5194/angeo-22-3109-2004
    [12] NADE D P, SHARMA A K, NIKTE S S, et al. Occurrence of F-region plasma bubble over low latitude station: Kolhapur[C]//Proceedings of the National Symposium on Current trends in Atmospheric Research including Communication And Navigation aspects (CARCAN-2012), Vignana Bharathi Institute of Technology, Hyderabad, A. P. December 21-22, 2012. pp. 94-99.
    [13] TAORI A, SINDHYA A. Measurements of equatorial plasma depletion velocity using 630 nm airglow imaging over a low-latitude Indian station[J]. Journal of Geophysical Research: Space Physics, 2014, 119(1): 396-401. doi: 10.1002/2013JA019465
    [14] NARAYANAN V L, GURUBARAN S, SHINY M B B, et al. Some new insights of the characteristics of equatorial plasma bubbles obtained from Indian region[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2017, 156: 80-86. doi: 10.1016/j.jastp.2017.03.006
    [15] WANG C. New chains of space weather monitoring stations in China[J]. Space Weather, 2010, 8(8): S08001. doi: 10.1029/2010SW000603
    [16] LI Q Z, XU J Y, GUSMAN A R, et al. Upper-atmosphere responses to the 2022 Hunga Tonga-Hunga Ha′apai volcanic eruption via acoustic gravity waves and air-sea interaction[J]. Atmospheric Chemistry and Physics, 2024, 24(14): 8343-8361. doi: 10.5194/acp-24-8343-2024
    [17] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90. doi: 10.1145/3065386
    [18] SMIRNOV E A, TIMOSHENKO D M, ANDRIANOV S N. Comparison of regularization methods for ImageNet classification with deep convolutional neural networks[J]. AASRI Procedia, 2014, 6: 89-94. doi: 10.1016/j.aasri.2014.05.013
    [19] LIU L, OUYANG W L, WANG X G, et al. Deep learning for generic object detection: a survey[J]. International Journal of Computer Vision, 2020, 128(2): 261-318. doi: 10.1007/s11263-019-01247-4
    [20] LAI C, XU J Y, YUE J, et al. Automatic extraction of gravity waves from all-sky airglow image based on machine learning[J]. Remote Sensing, 2019, 11(13): 1516. doi: 10.3390/rs11131516
    [21] LAI C, XU J Y, LIN Z S, et al. Statistical characteristics of nighttime medium-scale traveling ionospheric disturbances from 10-years of airglow observation by the machine learning method[J]. Space Weather, 2023, 21(5): e2023SW003430. doi: 10.1029/2023SW003430
    [22] SUN Longchang. Study on Low- and Mid-Latitudinal Ionospheric Irregularity Based on Ground-Based and Satellite Observations[D]. Beijing: University of Chinese Academy of Sciences (National Space Science Center, Chinese Academy of Sciences), 2017: 47-48 (孙龙昌. 基于地基和卫星观测的中低纬电离层不规则体研究[D]. 北京: 中国科学院大学(中国科学院国家空间科学中心), 2017: 47-48

    SUN Longchang. Study on Low- and Mid-Latitudinal Ionospheric Irregularity Based on Ground-Based and Satellite Observations[D]. Beijing: University of Chinese Academy of Sciences (National Space Science Center, Chinese Academy of Sciences), 2017: 47-48
    [23] GARCIA F J, TAYLOR M J, KELLEY M C. Two-dimensional spectral analysis of mesospheric airglow image data[J]. Applied Optics, 1997, 36(29): 7374-7385. doi: 10.1364/AO.36.007374
    [24] HUANG C Y, BURKE W J, MACHUZAK J S, et al. Equatorial plasma bubbles observed by DMSP satellites during a full solar cycle: toward a global climatology[J]. Journal of Geophysical Research: Space Physics, 2002, 107(A12): 1434. doi: 10.1029/2002JA009452
    [25] WU K, XU J Y, ZHU Y J, et al. Occurrence characteristics of branching structures in equatorial plasma bubbles: a statistical study based on all-sky imagers in China[J]. Earth and Planetary Physics, 2021, 5(5): 407-415. doi: 10.26464/epp2021044
    [26] ZHONG J, ZOU Z M, WU K, et al. Automatic detection and feature extraction of equatorial plasma bubbles from all-sky airglow image based on machine learning[J]. Space Weather, 2025, 23(5): e2025SW004336. doi: 10.1029/2025SW004336
    [27] HAASE J S, DAUTERMANN T, TAYLOR M J, et al. Propagation of plasma bubbles observed in Brazil from GPS and airglow data[J]. Advances in Space Research, 2011, 47(10): 1758-1776. doi: 10.1016/j.asr.2010.09.025
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  479
  • HTML全文浏览量:  127
  • PDF下载量:  6
  • 被引次数: 

    0(来源:Crossref)

    0(来源:其他)

出版历程
  • 收稿日期:  2025-06-21
  • 修回日期:  2025-10-22
  • 网络出版日期:  2025-12-16

目录

    /

    返回文章
    返回