留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微重力水电解槽两相热流动与水量分配数值模拟

刘晓天 吴传嘉 马鹏 王双峰 李明雨 尹永利

刘晓天, 吴传嘉, 马鹏, 王双峰, 李明雨, 尹永利. 微重力水电解槽两相热流动与水量分配数值模拟[J]. 空间科学学报, 2020, 40(3): 382-393. doi: 10.11728/cjss2020.03.382
引用本文: 刘晓天, 吴传嘉, 马鹏, 王双峰, 李明雨, 尹永利. 微重力水电解槽两相热流动与水量分配数值模拟[J]. 空间科学学报, 2020, 40(3): 382-393. doi: 10.11728/cjss2020.03.382
LIU Xiaotian, WU Chuanjia, MA Peng, WANG Shuangfeng, LI Mingyu, YIN Yongli. Numerical Simulation of Two-phase Heat Flow and Water Distribution for Water Electrolyzer in Microgravity[J]. Chinese Journal of Space Science, 2020, 40(3): 382-393. doi: 10.11728/cjss2020.03.382
Citation: LIU Xiaotian, WU Chuanjia, MA Peng, WANG Shuangfeng, LI Mingyu, YIN Yongli. Numerical Simulation of Two-phase Heat Flow and Water Distribution for Water Electrolyzer in Microgravity[J]. Chinese Journal of Space Science, 2020, 40(3): 382-393. doi: 10.11728/cjss2020.03.382

微重力水电解槽两相热流动与水量分配数值模拟

doi: 10.11728/cjss2020.03.382 cstr: 32142.14.cjss2020.03.382
基金项目: 

广东省省级科技计划项目资助(2017B010122001)

详细信息
    作者简介:
    • 刘晓天,E-mail:xiaotianlll@163.com
  • 中图分类号: V524

Numerical Simulation of Two-phase Heat Flow and Water Distribution for Water Electrolyzer in Microgravity

  • 摘要: 建立了固体聚合物电解槽单体的三维两相流动模型和电解槽系统供水过程模型,对电解槽的供水、两相流动和温度场特性进行模拟仿真,分析放置方式和微重力环境等因素对其工作性能的影响.电解槽单体的数值模拟结果表明,在微重力条件下或者水平放置时,其内部速度场和温度场都分布均匀.但是采用竖直放置且水平供水方式时,电解生成的氧气在电解槽上部聚集,出现局部缺水现象.对电解槽系统供水过程的数值模拟结果表明,无论在地面还是微重力条件下,电解槽系统的水量分配都是不均匀的.水平放置时,电解槽系统内的电解槽单体进出口水量从底部至顶部先减少后增加;在竖直放置或微重力条件下,水量从其底部至顶部持续增加.

     

  • [1] LIN Zidong, BAI Song, ZHANG Xiaohui. Development prospect of water electrolysis hydrogen production technology[J]. J. Ship Chem. Defense, 2014, 2:48-54(吝子东, 白松, 张晓辉. 水电解制氢技术发展前景[J].舰船防化, 2014, 2:48-54)
    [2] CHENG Jun, YE Fang, ZHANG Wei, et al. Development status of proton exchange membrane electrolyzer for energy storage[J]. J. Chem. Bioeng., 2015, 32(01):1-7(程俊, 叶芳, 张伟, 等. 储能用质子交换膜电解池的发展现状[J]. 化学与生物工程, 2015, 32(01):1-7)
    [3] YIN Xuling, YE Fang, GUO Hang, et al. Two-dimensional numerical simulation of transient response of two-phase heat and mass transfer in a proton exchange membrane electrolyzer cell[J]. J. Sust. Energ., 2018, 8(1):10-22(伊许玲, 叶芳, 郭航, 等. 质子交换膜电解池两相传热传质瞬态响应二维数值模拟[J]. 可持续能源, 2018, 8(1):10-22)
    [4] CARMO M, FRITZ D L, MERGE J, et al. A comprehensive review on PEM water electrolysis[J]. Int. J. Hydrogen Energ., 2013, 38(12):4901-4934
    [5] LI Junrong, YIN Yongli, ZHOU Kanghan, et al. Progress of oxygen generation technology by water electrolysis in space station[J]. J. Aerosp. Med. Med. Eng., 2013, 26(3):215-220(李俊荣, 尹永利, 周抗寒, 等. 空间站电解制氧技术研究进展[J]. 航天医学与医学工程, 2013, 26(3):215-220)
    [6] ZENG Qingtang, ZHENG Chuanxian. Oxygen generation technology by water electrolysis in space station[J]. J. Aerosp. Med. Med. Eng., 1990, 3(3):222-226(曾庆堂, 郑传先. 空间站水电解制氧技术[J]. 航天医学与医学工程, 1990, 3(3):222-226)
    [7] YIN Yongli, ZHOU Kanghan, LI Junrong, et al. Study on environmental adaptability design and test of pxygen generation assembly by electrolysis[J]. J. Aerosp. Med. Med. Eng., 2015, 28(5):358-362(尹永利, 周抗寒, 李俊荣, 等. 电解制氧装置环境适应性设计与试验研究[J]. 航天医学与医学工程, 2015, 28(5):358-362)
    [8] ZHOU Kanghan, REN Chunbo, WANG Fei, et al. Development and test of 5MPa high pressure proton exchange membrane water electrolysis system[J]. J. Aerosp. Med. Med. Eng., 2012, 25(5):368-371(周抗寒, 任春波, 王飞, 等. 5MPa高压质子交换膜水电解装置的研制与试验[J]. 航天医学与医学工程, 2012, 25(5):368-371)
    [9] ZHANG Xinrong, REN Jianxun, LIANG Xingang. Mass optimization of SPE oxygen generation system in manned spacecraft[J]. Tsinghua Sci. Technol., 2002, 42(08):1106-1109(张信荣, 任建勋, 梁新刚. 载人航天器SPE水电解制氧系统的轻量化研究[J]. 清华大学学报.:自然科学版, 2002, 42(08):1106-1109)
    [10] PENG Chao. Experimental Study on Gravity Effect and Electrical Properties of Two-Phase Flow in Transparent SPE Electrolytic Cell[D]. Beijing:Graduate School of the Chinese Academy of Sciences, 2012(彭超. 透明SPE电解电池内两相流重力效应及其电性能实验研究[D]. 北京:中国科学院研究生院, 2012)
    [11] PENG Chao, ZHAO Jianfu, DU Wangfang, et al. Experimental study of the orientation influence on performance of electrolytic cell[J]. J. Eng. Thermophys., 2013, 34(8):1491-1493(彭超, 赵建福, 杜王芳, 等. 安装方位对电解电池性能影响的实验研究[J]. 工程热物理学报, 2013, 34(8):1491-1493)
    [12] ZHAO Jianfu, HU Wenrui. Novel Investigation on the principle of similarity for microgravity two-phase flow[J]. J. Appl. Found. Eng. Sci., 2002, 1:1-7(赵建福, 胡文瑞. 微重力两相流相似模拟准则新探[J]. 应用基础与工程科学学报, 2002, 1:1-7)
    [13] KURMAZENKO E A, SAMSONOV N M, GAVRILOV L I, et al. Off-normal situations related to the operation of the electron-VM oxygen generation system aboard the international space station[R]. Rome:SAE Technical Paper, 2005
    [14] Millet P. Water electrolysis using EME technology:temperature profile inside a nafion membrane during electrolysis[J]. Electrochim. Acia, 1991, 36(2):263-267
    [15] HAN Bo, MO Jingke, KANG Zhenye, et al. Modeling of two-phase transport in proton exchange membrane electrolyzer cells for hydrogen energy[J]. Int. J. Hydrogen Energ., 2017, 42(7):4478-4489
    [16] ALDAS K, PEHLIVANOGLU N, MAT M D. Numerical and experimental investigation of two-phase flow in an electrochemical cell[J]. Int. J. Hydrogen Energ., 2008, 33(14):3668-3675
    [17] AUBRAS F, DESEURE J, KADJO J-J A, et al. Two-dimensional model of low-pressure PEM electrolyser:two-phase flow regime, electrochemical modelling and experimental validation[J]. Int. J. Hydrogen Energ., 2017, 42(42):26203-26216
    [18] OLESEN A C, ROMER C, KAR S K. A numerical study of the gas-liquid, two-phase flow maldistribution in the anode of a high pressure PEM water electrolysis cell[J]. Int. J. Hydrogen Energ., 2016, 41(1):52-68
    [19] NIE J, CHEN Y. Numerical modeling of three-dimensional two-phase gas-liquid flow in the flow field plate of a PEM electrolysis cell[J]. Int. J. Hydrogen Energ., 2010, 35(8):3183-3197
    [20] ARBABI F, MONTAZERI H, ABOUATALLAH R, et al. Three-dimensional computational fluid dynamics modelling of oxygen bubble transport in polymer electrolyte membrane electrolyzer porous transport layers[J]. J. Electrochem. Soc., 2016, 163(11):3062-3069
    [21] YU Jiang, YAN Kangping, XIA Guangyi, et al. Numerical simulation for temperature field in the anode of SPE water electrolyzer[J]. Sichuan J. Chem. Ind., 2007, 10:9-12(于江, 闫康平, 夏广义, 等. SPE水电解槽阳极温度场数值模拟[J]. 四川化工, 2007, 10(05):9-12)
    [22] LI Linlin, ZHANG Jili, ZHOU Kanghan. Numerical simulation analysis of single-phase flow field in micro-flow-channels of the small square cylinders in the electrolysis oxygen generation[J]. J. Aerosp. Med. Med. Eng., 2009, 22(1):22-26(李林林, 张吉礼, 周抗寒. 电解水制氧槽方柱群微小流道单相流场数值模拟分析[J]. 航天医学与医学工程, 2009, 22(1):22-26)
    [23] LI Linlin, ZHANG Jili. Experimental study on single phose flow field of micro-square cylinder group in oxygen generation sample by PIV technique[J]. J. Harbin Univ. Technol., 2008, 40(8):1222-1226(李林林, 张吉礼. 电解制氧槽试件微柱群单相流场PIV测试[J]. 哈尔滨工业大学学报, 2008, 40(8):1222-1226)
  • 加载中
计量
  • 文章访问数:  1690
  • HTML全文浏览量:  234
  • PDF下载量:  91
  • 被引次数: 

    0(来源:Crossref)

    0(来源:其他)

出版历程
  • 收稿日期:  2020-02-25
  • 修回日期:  2020-04-09
  • 刊出日期:  2020-05-15

目录

    /

    返回文章
    返回