基于MSSA算法的西北地区GNSS坐标时间序列共模误差分析
doi: 10.11728/cjss2025.04.2024-0072 cstr: 32142.14.cjss.2024-0072
Common Mode Error Analysis of GNSS Coordinate Time Series in Northwest China Based on MSSA Algorithm
-
摘要: 针对西北地区新疆、甘肃、青海全球导航卫星系统(GNSS)垂向坐标时间序列的共模误差分析研究不够全面、深入这一问题, 以MSSA算法为理论基础, 对新疆、甘肃、青海61个站点进行数据预处理以提高数据的精度与完整性, 在此基础上提取分析该区域GNSS坐标时间序列中的共模误差, 并进行周期性探测分析, 将提取的共模误差(CME)与水文荷载(NTOL)、非潮汐大气荷载(NTAL)以及非潮汐海洋荷载(HYDL)引起的位移时间序列进行相关性分析以探究共模误差的特征性来源. 对比站点共模误差剔除前后序列, 结果表明残差标准差平均精度提高27.5%, 测站减少幅度最大达到66.7%, 精度提高效果显著; 分析结果得到该区域共模误差受到三种地表质量荷载影响显著程度从高到低分别为水文荷载、非潮汐大气荷载、非潮汐海洋荷载. 通过对共模误差的提取分析以及误差特征来源研究可以进一步提高西北地区GNSS坐标时间序列精度, 以更好地为地震位移、地壳形变研究提供更高精度数据支持.Abstract: Aiming at the problem that the common mode error analysis of the vertical coordinate time series of the Global Navigation Satellite System (GNSS) in Northwest China is not comprehensive and in-depth, the MSSA algorithm is used as the theoretical basis to preprocess the data of 61 stations in the three northwestern provinces (Xinjiang, Gansu, Qinghai) to improve the accuracy and integrity of the data, and on this basis, the common mode error of GNSS coordinate time series in the region is extracted and analyzed. The characteristic source of the Common Mode Error (CME) was investigated by correlation analysis between the extracted CME and the displacement time series caused by Hydrologic Load (HYDL), Non-Tidal Atmospheric Load (NTAL) and Non-Tidal Ocean Load (NTOL). Compared with the sequence before and after the removal of the common mode error, the average accuracy of the residual standard deviation is increased by 27.5%, and the maximum reduction of the station is reduced by 66.7%. The results show that the common mode error in this region is significantly affected by three kinds of surface mass loads: hydrologic load, non-tidal atmospheric load and non-tidal ocean load. Through the extraction and analysis of common mode errors and the research on the source of error characteristics, the GNSS coordinate time series accuracy of the three northwestern provinces can be further improved, so as to provide higher precision data support for seismic displacement and crustal deformation research.
-
Key words:
- Northwest China /
- Common mode error /
- GNSS /
- Periodic detection
-
表 1 共模误差剔除前后振幅对比
Table 1. Amplitude comparison before and after common-mode error removal
测站 状态 最大值/m 最小值/m 平均值/m 标准差/m 测站 状态 最大值/m 最小值/m 平均值/m 标准差/m GSAX 改正前 0.008 –0.022 –0.007 0.015 QHTT 改正前 0.029 –0.004 0.012 0.016 改正后 0.005 –0.016 –0.003 0.011 改正后 0.011 –0.004 0.005 0.007 GSDH 改正前 0.013 –0.017 –0.003 0.015 QHYS 改正前 0.017 –0.012 0.006 0.019 改正后 0.011 –0.014 –0.002 0.009 改正后 0.009 –0.005 0.003 0.007 GSDX 改正前 0.021 –0.025 0.002 0.023 XJAL 改正前 0.077 –0.021 0.021 0.049 改正后 0.016 –0.017 –0.001 0.019 改正后 0.021 –0.013 0.011 0.021 GSDL 改正前 0.006 –0.007 0.001 0.003 XJBC 改正前 0.022 –0.028 –0.008 0.021 改正后 0.005 –0.007 0.001 0.002 改正后 0.013 –0.011 –0.004 0.013 GSDT 改正前 0.005 –0.008 0.008 0.007 XJBE 改正前 0.023 –0.011 0.005 0.018 改正后 0.003 –0.005 0.006 0.005 改正后 0.011 –0.007 0.003 0.006 GSJN 改正前 0.035 –0.029 0.008 0.032 XJBY 改正前 0.036 –0.009 0.012 0.024 改正后 0.021 –0.017 0.005 0.015 改正后 0.015 –0.005 0.007 0.015 GSJT 改正前 0.029 –0.021 0.006 0.024 XJDS 改正前 0.016 –0.023 –0.006 0.019 改正后 0.015 –0.017 0.004 0.019 改正后 0.007 –0.011 –0.003 0.014 GSJY 改正前 0.021 –0.014 0.003 0.017 XJFY 改正前 0.017 –0.012 –0.003 0.018 改正后 0.011 –0.007 0.002 0.011 改正后 0.009 –0.013 –0.001 0.013 GSLY 改正前 0.044 –0.031 –0.009 0.037 XJHT 改正前 0.027 –0.009 0.004 0.018 改正后 0.017 –0.012 –0.005 0.015 改正后 0.011 –0.004 0.002 0.014 GSLZ 改正前 0.014 –0.04 –0.013 0.027 XJJJ 改正前 0.006 –0.031 –0.011 0.018 改正后 0.007 –0.017 –0.005 0.017 改正后 0.002 –0.015 –0.005 0.014 GSMA 改正前 0.014 –0.026 0.004 0.011 XJKC 改正前 0.004 –0.032 –0.015 0.018 改正后 0.007 –0.017 0.004 0.007 改正后 0.003 –0.015 –0.007 0.013 GSMI 改正前 0.015 –0.013 0.002 0.014 XJKE 改正前 0.018 –0.033 –0.012 0.021 改正后 0.007 –0.005 0.001 0.005 改正后 0.011 –0.015 –0.009 0.015 GSML 改正前 0.017 –0.026 0.011 0.019 XJKL 改正前 0.015 –0.001 0.055 0.075 改正后 0.011 –0.017 0.004 0.007 改正后 0.009 –0.001 0.027 0.054 GSMQ 改正前 0.023 –0.034 0.005 0.028 XJML 改正前 0.011 –0.027 –0.008 0.019 改正后 0.011 –0.016 0.001 0.027 改正后 0.007 –0.008 –0.007 0.013 GSMX 改正前 0.013 –0.026 –0.004 0.019 XJQH 改正前 0.026 –0.009 0.005 0.016 改正后 0.005 –0.013 –0.001 0.007 改正后 0.011 0.003 0.002 0.011 GSPL 改正前 0.031 –0.034 0.002 0.022 XJQM 改正前 0.017 –0.021 –0.001 0.021 改正后 0.015 –0.017 0.001 0.013 改正后 0.009 –0.016 0.002 0.017 GSTS 改正前 0.073 –0.016 0.022 0.024 XJRQ 改正前 0.018 –0.015 0.002 0.016 改正后 0.024 –0.009 0.011 0.021 改正后 0.011 –0.009 0.002 0.014 GSQS 改正前 0.034 –0.031 0.007 0.013 XJSH 改正前 0.015 –0.024 0.005 0.019 改正后 0.017 –0.019 0.002 0.009 改正后 0.012 –0.015 0.004 0.015 GSWD 改正前 0.024 –0.032 –0.009 0.018 XJSS 改正前 0.002 –0.011 –0.007 0.016 改正后 0.011 –0.017 –0.005 0.015 改正后 0.002 –0.009 –0.005 0.07 DXIN 改正前 0.059 –0.029 0.014 0.014 XJTC 改正前 0.032 –0.013 0.011 0.022 改正后 0.018 –0.012 0.005 0.013 改正后 0.023 –0.007 0.006 0.017 QHBM 改正前 0.034 –0.024 0.002 0.031 XJTZ 改正前 0.022 –0.029 –0.001 0.025 改正后 0.013 –0.007 –0.001 0.013 改正后 0.019 –0.014 0.002 0.019 QHDL 改正前 0.021 –0.022 0.009 0.020 XJWL 改正前 0.025 –0.016 0.003 0.02 改正后 0.007 –0.013 0.005 0.009 改正后 0.013 –0.012 0.001 0.016 QHGC 改正前 0.023 –0.019 0.004 0.017 XJWQ 改正前 0.004 –0.037 –0.018 0.02 改正后 0.005 –0.014 0.002 0.013 改正后 0.004 –0.015 –0.009 0.015 QHGE 改正前 0.021 –0.026 0.001 0.023 XJWU 改正前 0.004 –0.038 –0.015 0.02 改正后 0.012 –0.013 0.002 0.015 改正后 0.003 –0.014 –0.007 0.017 QHLH 改正前 0.066 –0.01 0.017 0.027 XJXY 改正前 0.041 –0.008 0.016 0.024 改正后 0.009 0.001 0.011 0.019 改正后 0.019 –0.005 0.007 0.019 QHMD 改正前 0.012 –0.019 0.007 0.011 XJYC 改正前 0.027 –0.026 0.001 0.026 改正后 0.005 –0.009 0.004 0.005 改正后 0.015 –0.013 0.001 0.021 QHME 改正前 0.032 0.001 0.013 0.011 XJYN 改正前 0.063 –0.041 –0.015 0.052 改正后 0.012 0.001 0.007 0.007 改正后 0.017 –0.015 –0.009 0.047 QHMQ 改正前 0.074 –0.026 0.006 0.036 XJYT 改正前 0.008 –0.028 –0.009 0.025 改正后 0.017 –0.011 0.004 0.023 改正后 0.007 –0.012 –0.005 0.017 QHMY 改正前 0.014 –0.048 0.006 0.019 XJZS 改正前 0.036 –0.013 0.013 0.025 改正后 0.008 –0.021 0.01 0.012 改正后 0.015 –0.007 0.007 0.019 QHQL 改正前 0.046 –0.009 0.013 0.028 XJBL 改正前 0.014 –0.021 0.004 0.019 改正后 0.014 –0.005 0.008 0.019 改正后 0.005 –0.013 0.003 0.013 QHTR 改正前 0.013 –0.093 0.005 0.053 改正后 0.005 –0.019 0.003 0.031 表 2 荷载平均相关性系数
Table 2. Average load correlation coefficient
荷载类别 平均相关性系数/(%) HYDL 41.2 NTAL 22.1 NTOL 8.9 -
[1] YAN J, DONG D N, BÜRGMANN R, et al. Separation of sources of seasonal uplift in China using independent component analysis of GNSS time series[J]. Journal of Geophysical Research: Solid Earth, 2019, 124(11): 11951-11971 doi: 10.1029/2019JB018139 [2] 盛传贞, 甘卫军, 梁诗明, 等. 滇西地区GPS时间序列中陆地水载荷形变干扰的GRACE分辨与剔除[J]. 地球物理学报, 2014, 57(1): 42-52 doi: 10.6038/cjg20140105SHENG Chuanzhen, GAN Weijun, LIANG Shiming, et al. Identification and elimination of non-tectonic crustal deformation caused by land water from GPS time series in the western Yunnan province based on GRACE observations[J]. Chinese Journal of Geophysics, 2014, 57(1): 42-52 doi: 10.6038/cjg20140105 [3] 廖华, 徐锐, 陈维锋, 等. 汶川地震前后四川区域GPS时序特征演变及统计分析[J]. 地球物理学报, 2013, 56(4): 1237-1245 doi: 10.6038/cjg20130418LIAO Hua, XU Rui, CHEN Weifeng, et al. Propertyvariation and statistical analysis of Sichuan GPS time series before and after Wenchuan Earthquake[J]. Chinese Journal of Geophysics, 2013, 56(4): 1237-1245 doi: 10.6038/cjg20130418 [4] 杨博, 周伟, 陈阜超, 等. GPS连续站水平位置时间序列共模白噪声识别与估计的欧拉-滤波法[J]. 山东科技大学学报(自然科学版), 2010, 29(3): 26-31,36YANG Bo, ZHOU Wei, CHEN Fuchao, et al. The Euler-filter algorithm of recognition and estimation on the common mode white noise of time series for horizontal components of GPS continuous observation stations[J]. Journal of Shandong University of Science and Technology (Natural Science Edition), 2010, 29(3): 26-31,36 [5] 杨博, 张风霜, 韩月萍. GPS连续站水平分量时间序列共模误差识别的欧拉-小波法[J]. 大地测量与地球动力学, 2010, 30(3): 100-104 doi: 10.3969/j.issn.1671-5942.2010.03.024YANG Bo, ZHANG Fengshuang, HAN Yueping. Euler–wavelet method and its application in identification of common–mode error from time sequences of horizontal components of GPS continuous stations[J]. Journal of Geodesy and Geodynamics, 2010, 30(3): 100-104 doi: 10.3969/j.issn.1671-5942.2010.03.024 [6] 王梅, 江在森, 侯贺晟. GPS连续站水平位移分量相关性分析[J]. 大地测量与地球动力学, 2010, 30(2): 19-24 doi: 10.3969/j.issn.1671-5942.2010.02.005WANG Mei, JIANG Zaiden, HOU Hesheng. Correlation analysis of continuous GPS horizontal displacement components[J]. Journal of Geodesy and Geodynamics, 2010, 30(2): 19-24 doi: 10.3969/j.issn.1671-5942.2010.02.005 [7] 谢树明, 潘鹏飞, 周晓慧. 大空间尺度GPS网共模误差提取方法研究[J]. 武汉大学学报•信息科学版, 2014, 39(10): 1168-1173XIE Shuming, PAN Pengfei, ZHOU Xiaohui. Research on common mode error extraction method for large–scale GPS network[J]. Geomatics and Information Science of Wuhan University, 2014, 39(10): 1168-1173 [8] 谢树明, 潘鹏飞, 周晓慧. GPS坐标时间序列共模误差空间特性分析[J]. 地理空间信息, 2014, 12(4): 44-45,54 doi: 10.11709/j.issn.1672-4623.2014.04.015XIE Shuming, PAN Pengfei, ZHOU Xiaohui. Spatial characteristics analysis of common mode error in GPS coordinate time series[J]. Geospatial Information, 2014, 12(4): 44-45,54 doi: 10.11709/j.issn.1672-4623.2014.04.015 [9] 田云锋, 沈正康, 李鹏. 连续GPS观测中的相关噪声分析[J]. 地震学报, 2010, 32(6): 696-704TIAN Yunfeng, SHEN Zhengkang, LI Peng. Analysis on correlated noise in continuous GPS observations[J]. Acta Seismologica Sinica, 2010, 32(6): 696-704 [10] TAN W J, CHEN J P, DONG D N, et al. Analysis of the potential contributors to common mode error in Chuandian region of China[J]. Remote Sensing, 2020, 12(5): 751 doi: 10.3390/rs12050751 [11] 王丽红, 鲁杨梅, 邱宝贤. GAMIT软件中不同星历对GPS/BDS数据定位的影响[J]. 海洋测绘, 2022, 42(1): 14-17 doi: 10.3969/j.issn.1671-3044.2022.01.004WANG Lihong, LU Yangmei, QIU Baoxian. Position affect of GPS/BDS data by GAMIT with different precise ephemeris[J]. Hydrographic Surveying and Charting, 2022, 42(1): 14-17 doi: 10.3969/j.issn.1671-3044.2022.01.004 [12] 何月帆, 聂桂根, 武曙光, 等. 不同版本的GAMIT超短基线数据解算精度分析[J]. 测绘工程, 2021, 30(5): 18-22, 31HE Yuefan, NIE Guigen, WU Shuguang et al. Ultra–short baseline solution based on different versions of GAMT[J]. Engineering of Surveying and Mapping, 2019, 30(5): 18-22, 31 [13] 姜卫平. GNSS基准站网数据处理方法与应用[M]. 武汉: 武汉大学出版社, 2017JIANG Weiping. GNSS Reference Station Network Data Processing Method and Application[M]. Wuhan: Wuhan University Press, 2017 [14] 侯增楠, 黄征凯, 王琰, 等. 一种改进WVSSA算法的GNSS时间序列降噪方法[J]. 导航定位学报, 2023, 11(4): 97-103HOU Zengnan, HUANG Zhengkai, WANG Yan, et al. A noise reduction method for GNSS time series based on improved WVSSA algorithm[J]. Journal of Navigation and Positioning, 2023, 11(4): 97-103 [15] 何月帆. 高精度GPS数据处理及时间序列分析[D]. 西安: 长安大学, 2019HE Yuefan. High Precision GPS Data Processing and Time Series Analysis[D]. Xi’an: Chang’an University, 2019 [16] 钱炜, 岳建平. MSSA在GPS坐标序列分析中的应用[J]. 测绘通报, 2021(9): 49-52,63QIAN Wei, YUE Jianping. Application of MSSA in GPS coordinate sequence analysis[J]. Bulletin of Surveying and Mapping, 2021(9): 49-52,63 [17] 李爱国, 平书哑, 郭敏. 利用改进3σ法获得残差序列的共模误差提取[J]. 测绘科学, 2023, 48(7): 72-83LI Aiguo, PING Shaya, GUO Min. The common mode error extraction of residual series was obtained by improved 3σ method[J]. Science of Surveying and Mapping, 2023, 48(7): 72-83 [18] YUAN P, LI Z, JIANG W P, et al. Influences of environmental loading corrections on the nonlinear variations and velocity uncertainties for the reprocessed global positioning system height time series of the crustal movement observation network of China[J]. Remote Sensing, 2018, 10(6): 958 doi: 10.3390/rs10060958 [19] 常航. GPS垂向时序中环境负载效应研究[D]. 西安: 长安大学, 2019CHANG Hang. Research on Environmental Loading Effect in GPS Vertical Time Series[D]. Xi’an: Chang’an University, 2019 [20] DILL R, DOBSLAW H. Numerical simulations of global-scale high-resolution hydrological crustal deformations[J]. Journal of Geophysical Research: Solid Earth, 2013, 118(9): 5008-5017 doi: 10.1002/jgrb.50353 -
-