留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于LSTM的改进模型在电离层TEC预报中的应用

黄灿 黎峻宇 刘立龙 黄良珂 韦律权

黄灿, 黎峻宇, 刘立龙, 黄良珂, 韦律权. 基于LSTM的改进模型在电离层TEC预报中的应用[J]. 空间科学学报. doi: 10.11728/cjss2025.05.2024-0112
引用本文: 黄灿, 黎峻宇, 刘立龙, 黄良珂, 韦律权. 基于LSTM的改进模型在电离层TEC预报中的应用[J]. 空间科学学报. doi: 10.11728/cjss2025.05.2024-0112
HUANG Can, LI Junyu, LIU Lilong, HUANG Liangke, WEI Lüquan. Application of Improved Model Based on LSTM in Ionospheric TEC Forecast (in Chinese). Chinese Journal of Space Science, 2025, 45(5): 1-9 doi: 10.11728/cjss2025.05.2024-0112
Citation: HUANG Can, LI Junyu, LIU Lilong, HUANG Liangke, WEI Lüquan. Application of Improved Model Based on LSTM in Ionospheric TEC Forecast (in Chinese). Chinese Journal of Space Science, 2025, 45(5): 1-9 doi: 10.11728/cjss2025.05.2024-0112

基于LSTM的改进模型在电离层TEC预报中的应用

doi: 10.11728/cjss2025.05.2024-0112 cstr: 32142.14.cjss.2024-0112
基金项目: 广西科技计划项目(GuikeAD23026177, 2024 GXNSFDA010041), 国家自然科学基金项目(42304018,42064002), 桂林理工大学科研启动基金资助项目(GUTQDJJ6616032), 广西空间信息与测绘重点实验室基金项目(21-238-21-05)和2024年度广西高校中青年教师科研基础能力提升项目(2024 KYZD03)共同资助
详细信息
    作者简介:
    • 黄灿 女, 1997年6月出生于广西壮族自治区钦州市, 桂林理工大学测绘地理信息学院在读硕士研究生, 主要研究电离层参数预测方法. E-mail: can_huangcc@163.com
    通讯作者:
    • 黎峻宇 男, 1989年2月出生于广西壮族自治区玉林市, 现为桂林理工大学测绘地理信息学院副教授, 硕士生导师, 主要从事GNSS空间环境监测研究. E-mail: yl_lijunyu@163.com
  • 中图分类号: P352

Application of Improved Model Based on LSTM in Ionospheric TEC Forecast

  • 摘要: 电离层延迟是全球卫星导航定位中重要的误差源之一, 提高电离层总电子含量(Total Electron Content, TEC)预报精度对改善卫星导航定位精度极其重要. 本文联合滑动窗口(Sliding Window)和长短时记忆(Long Short-Term Memory, LSTM))神经网络, 以滑动窗口算法对输入序列数据集不断更新并测试不同输入序列长度对应模型的精度, 最后以预测值来更新输入数据序列的最后10%, 进而构建TEC预报模型. 验证结果表明, 该模型在平静期和磁暴期预测残差绝对值小于5 TECU的比例均达85%以上, 较传统LSTM模型对应值占比增加了49%, 71%, 均方根误差(RMSE)低31%, 35%; 其预报结果的平均绝对误差(MAE)减少25%, 32%; SLSTM模型预测结果的RMSE均值、MAE均值均比传统LSTM模型、BP模型小.

     

  • 图  1  LSTM网络结构

    Figure  1.  LSTM network structure

    图  2  联合滑动窗口的LSTM预测流程

    Figure  2.  LSTM prediction diagram of joint sliding window

    图  3  P的占比与误差之间的关系

    Figure  3.  Relationship between prediction step size and error

    图  4  2022年Dst指数

    Figure  4.  Dst index in 2022

    图  6  不同模型预报效果

    Figure  6.  Effectiveness of different model forecasts

    图  5  20个格网对应地理位置

    Figure  5.  Geographical locations corresponding to 20 grids

    图  7  平静期各模型预报残差

    Figure  7.  Residuals of model forecasts for the quiet period

    图  8  磁暴期各模型预报残差

    Figure  8.  Residuals of model forecasts for the magnetic storms periods

    表  1  Dst指数对应地磁活动强度

    Table  1.   Intensity of geomagnetic activity corresponding to the Dst index

    Dst /nT≤ –100–(100, –50](–50–30]>–30
    地磁活动强度平静
    下载: 导出CSV

    表  2  SLSTM/LSTM模型对20个格网预测结果的MAE(单位: TECU)

    Table  2.   MAE of SLSTM/LSTM model for prediction results of 20 grids (Unit: TECU)

    纬度/(º)N经度/(º)E (平静期)经度/(º)E (磁暴期)
    9510010511095100105110
    302.9/21.0/1.81.4/2.42.0/2.42.7/3.43.5/3.82.1/2.62.8/2.8
    27.51.6/2.11.4/3.31.6/2.43.3/2.82.7/3.41.6/2.91.6/2.63.5/2.9
    252.6/3.23.4/2.32.2/3.21.6/4.63.3/3.63.2/3.42.1/2.82.4/3.9
    22.51.6/3.11.5/2.52.1/1.93.4/2.61.1/4.11.7/2.32.2/2.72.1/3.3
    201.1/41.5/32.8/3.02.2/42.2/5.72.0/3.82.9/3.31.2/4
    均值2.1/2.82.3/3.4
    下载: 导出CSV

    表  3  SLSTM/LSTM模型对20个格网预测结果的RMSE (单位: TECU)

    Table  3.   RMSE of SLSTM/LSTM model for prediction results of 20 grids (Unit: TECU)


    纬度/(º)N
    经度/(º)E (平静期)经度/(º)E (磁暴期)
    9510010511095100105110
    303.5/2.51.3/2.32.4/2.73.1/2.83.6/4.34.0/4.63.1/3.43.6/3.7
    27.51.9/2.42.1/3.72.2/3.33.8/3.73.4/4.52.5/3.31.7/3.24.3/4.1
    253.2/3.74.0/3.23.2/41.9/5.53.8/4.53.7/4.32.3/3.52.8/4.9
    22.51.7/3.81.7/3.52.5/2.43.7/3.41.5/5.21.8/3.12.6/3.72.7/4.1
    201.2/4.71.6/4.33.1/43.2/5.12.8/7.12.1/4.83.0/4.61.4/5.2
    均值2.5/3.62.8/4.3
    下载: 导出CSV

    表  4  SLSTM, LSTM, BP模型对4个格网预测结果的RMSE均值和MAE均值(单位: TECU)

    Table  4.   RMSE mean and MAE mean values by SLSTM, LSTM and BP models for the prediction results of four grids (Unit: TECU)

    模型RMSE均值MAE均值
    平静期磁暴期下半年平静期磁暴期下半年
    SLSTM2.72.82.72.02.22.1
    LSTM3.75.03.83.14.03.3
    BP3.75.14.03.34.23.6
    下载: 导出CSV
  • [1] YAO Y B, LIU L, KONG J, et al. Global ionospheric modeling based on multi-GNSS, satellite altimetry, and Formosat-3/COSMIC data[J]. GPS Solutions, 2018, 22(4): 104 doi: 10.1007/s10291-018-0770-6
    [2] 袁运斌, 李敏, 霍星亮, 等. 北斗三号全球导航卫星系统全球广播电离层延迟修正模型(BDGIM)应用性能评估[J]. 测绘学报, 2021, 50(4): 436-447

    YUAN Yunbin, LI Min, HUO Xingliang, et al. Research on performance of BeiDou global broadcast ionospheric delay correction model (BDGIM) of BDS-3[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(4): 436-447
    [3] 朱威, 任晓东, 张小红. 不同纬度和站间距的电离层单星模型对PPP-RTK增强定位效果分析[J/OL]. 武汉大学学报(信息科学版), 1-13[2024-06-22]. https://doi.org/10.13203/j.whugis20230476

    ZHU Wei, REN Xiaodong, ZHANG Xiaohong. Performance of PPP-RTK enhanced by slant ionospheric model based on reference stations with different latitudes and distances[J/OL]. Geomatics and Information Science of Wuhan University, (2024-06-22). https://doi.org/10.13203/j.whugis20230476
    [4] 程胡华, 詹彩菊, 赵亮, 等. IRI2016参考电离层模型在高度60~100km的精度分析[J]. 测绘学报, 2020, 49(1): 42-54

    CHENG Huhua, ZHAN Caiju, ZHAO Liang, et al. Accuracy analysis of IRI2016 international reference ionosphere at altitude of 60~100 km[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(1): 42-54
    [5] QIAO J D, LIU Y, FAN Z Q, et al. Ionospheric TEC data assimilation based on Gauss–Markov Kalman filter[J]. Advances in Space Research, 2021, 68(10): 4189-4204 doi: 10.1016/j.asr.2021.08.004
    [6] 陈雨田, 刘立龙, 刘中流, 等. 纬度因素对季节性时序TEC短期预报模型的影响分析[J]. 大地测量与地球动力学, 2018, 38(6): 581-586

    CHEN Yutian, LIU Lilong, LIU Zhongliu, et al. Analysis of the influence of latitude factors on seasonal time series TEC short-term forecast model[J]. Journal of Geodesy and Geodynamics, 2018, 38(6): 581-586
    [7] 尹萍, 闫晓鹏, 宁泽浩. 一种基于LSTM与IRI模型的电离层层析TEC组合预测方法[J]. 电波科学学报, 2022, 37(5): 852-861

    YIN Ping, YAN Xiaopeng, NING Zehao. A combined forecasting method of ionospheric tomography TEC based on LSTM and IRI model[J]. Chinese Journal of Radio Science, 2022, 37(5): 852-861
    [8] 张富彬, 周晨, 王成, 等. 基于深度学习的全球电离层TEC预测[J]. 电波科学学报, 2021, 36(4): 553-561

    ZHANG Fubin, ZHOU Chen, WANG Cheng, et al. Global ionospheric TEC prediction based on deep learning[J]. Chinese Journal of Radio Science, 2021, 36(4): 553-561
    [9] TANG R X, ZENG F T, CHEN Z, et al. The comparison of predicting storm-time ionospheric TEC by three methods: ARIMA, LSTM, and Seq2Seq[J]. Atmosphere, 2020, 11(4): 316 doi: 10.3390/atmos11040316
    [10] 唐丝语, 黄智. 基于因果卷积与LSTM网络的电离层总电子含量预报[J]. 空间科学学报, 2022, 42(3): 357-365 doi: 10.11728/cjss2022.03.210401042

    TANG Siyu, HUANG Zhi. Prediction of ionospheric total electron content based on causal convolutional and LSTM network[J]. Chinese Journal of Space Science, 2022, 42(3): 357-365 doi: 10.11728/cjss2022.03.210401042
    [11] XIE T, DAI Z Q, ZHU X W, et al. LSTM-based short-term ionospheric TEC forecast model and positioning accuracy analysis[J]. GPS Solutions, 2023, 27(2): 66 doi: 10.1007/s10291-023-01406-8
    [12] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural computation, 1997, 9(8): 1735-1780 doi: 10.1162/neco.1997.9.8.1735
    [13] 刘伟峰, 黄江, 邓柏昌, 等. 基于GPS的广州地区电离层不规则体纬向漂移速度计算分析[J]. 空间科学学报, 2012, 32(1): 48-54 doi: 10.11728/cjss2012.01.048

    LIU Weifeng, HUANG Jiang, DENG Baichang, et al. Calculation analysis of ionospheric irregularity zonal drift velocity in Guangzhou based on GPS measurements[J]. Chinese Journal of Space Science, 2012, 32(1): 48-54 doi: 10.11728/cjss2012.01.048
    [14] KAREVAN Z, SUYKENS J A K. Transductive LSTM for time-series prediction: an application to weather forecasting[J]. Neural Networks, 2020, 125: 1-9 doi: 10.1016/j.neunet.2019.12.030
    [15] 郝祎琛, 谢心喻, 丁家琦, 等. 瞬态多相流场图神经网络时空预测方法研究[J]. 哈尔滨工程大学学报, 2024, 45(9): 1761-1769

    HAO Yichen, XIE Xinyu, DING Jiaqi, et al. Spatiotemporal prediction method for the transient multiphase flow field via graph neural network[J]. Journal of Harbin Engineering University, 2024, 45(9): 1761-1769
    [16] 赵鑫垚. 北斗/加速度计融合动态分析与预警[D]. 北京: 北京建筑大学, 2023

    ZHAO Xinyao. Beidou/Accelerometer fusion dynamic analysis and early warning[D]. Beijing: Beijing University of Civil Engineering and Architecture, 2023
    [17] 谢婷, 陈必焰, 匡翠林. 结合PCA和滑动时窗的电离层异常探测方法研究[J]. 大地测量与地球动力学, 2021, 41(10): 1085-1094

    XIE Ting, CHEN Biyan, KUANG Cuilin. Study of ionospheric anomaly detection method combining PCA and sliding time window[J]. Journal of Geodesy and Geodynamics, 2021, 41(10): 1085-1094
    [18] 唐旺, 马尚昌, 李程. 基于滑动窗口的LSTM地温预测方法[J]. 成都理工大学学报(自然科学版), 2021, 48(3): 377-384

    TANG Wang, MA Shangchang, LI Cheng. LSTM ground temperature prediction method based on sliding window[J]. Journal of Chengdu University of Technology (Science :Times New Roman;">& Technology Edition), 2021, 48(3): 377-384
    [19] ZHANG X H, REN X D, WU F B, et al. Short-term prediction of ionospheric TEC based on ARIMA model[J]. Journal of Geodesy and Geoinformation Science, 2019, 2(1): 9-16
    [20] 刘立龙, 陈雨田, 黎峻宇, 等. 活跃期区域电离层总电子短期预报及适用性分析[J]. 武汉大学学报(信息科学版), 2019, 44(12): 1757-1764

    LIU Lilong, CHEN Yutian, LI Junyu, et al. Short-term prediction and applicability analysis of regional ionospheric total electron content in active period[J]. Geomatics and Information Science of Wuhan University, 2019, 44(12): 1757-1764
    [21] DUNCAN R A. The equatorial F-region of the ionosphere[J]. Journal of Atmospheric and Terrestrial Physics, 1960, 18(2/3): 89-100
    [22] GONZALEZ W D, JOSELYN J A, KAMIDE Y, et al. What is a geomagnetic storm?[J]. Journal of Geophysical Research: Space Physics, 1994, 99(A4): 5771-5792 doi: 10.1029/93JA02867
    [23] REN X D, YANG P X, MEI D K, et al. Global ionospheric TEC forecasting for geomagnetic storm time using a deep learning-based multi-model ensemble method[J]. Space Weather, 2023, 21(3): e2022SW003231 doi: 10.1029/2022SW003231
    [24] MUHAMMAD A, KÜLAHCI F. A semi-supervised total electron content anomaly detection method using LSTM-auto-encoder[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2022, 241: 105979 doi: 10.1016/j.jastp.2022.105979
    [25] SHI S S, ZHANG K F, SHI J Q, et al. Modeling TEC maps over China using particle swarm optimization neural networks and long-term ground-based GPS, COSMIC, and Fengyun data[J]. Space Weather, 2023, 21(4): e2022SW003357 doi: 10.1029/2022SW003357
    [26] ZHANG L, WANG F L, SUN T, et al. A constrained optimization method based on BP neural network[J]. Neural Computing and Applications, 2018, 29(2): 413-421 doi: 10.1007/s00521-016-2455-9
    [27] 熊波, 李肖霖, 王宇晴, 等. 基于长短时记忆神经网络的中国地区电离层TEC预测[J]. 地球物理学报, 2022, 65(7): 2365-2377

    XIONG Bo, LI Xiaolin, WANG Yuqing, et al. Prediction of ionospheric TEC over China based on long and short-term memory neural network[J]. Chinese Journal Geophysics, 2022, 65(7): 2365-2377
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  331
  • HTML全文浏览量:  25
  • PDF下载量:  24
  • 被引次数: 

    0(来源:Crossref)

    0(来源:其他)

出版历程
  • 网络出版日期:  2025-01-10

目录

    /

    返回文章
    返回