Method of Design and Modeling for Lunar Exploration Engineering Based on UAF
-
摘要: 针对月球探测工程中大系统设计与接口验证难点, 为有效解决需求、功能和接口等先期验证问题, 本文将统一体系结构框架 (UAF) 进行适应性裁剪和组合, 并结合系统工程方法论正向设计思想, 提出了基于UAF的月球探测工程设计与建模方法. 围绕月球探测任务全生命周期中关键环节, 构建了涵盖战略、业务、资源三个视点下相关领域的视图模型体系, 并以此为核心框架开展建模分析. 通过需求追溯和逻辑仿真迭代验证, 可辨识模型行为逻辑和接口匹配等问题, 指导模型完成优化改进, 提升了设计与建模的合理性和有效性. 研究结果可为月球探测工程顶层设计提供可行性参考.Abstract: Aiming at the difficulties in System Of System (SOS) design and interface verification in lunar exploration engineering, in order to effectively solve the pre-validation problems of requirements, functions and interfaces, under the conditions of adaptive tailoring and combination for Unified Architecture Framework (UAF), the method of design and modeling for lunar exploration engineering based on UAF is proposed, which is combined with the methodology of systems engineering on the forward design ideology. Focusing on the key links in full lifecycle of lunar exploration mission, the view model systems covered with strategic, operational and resource viewpoints of related fields are established, which are taken as the core framework to carry out modeling analysis. Through requirements traceability and logical simulation iterative validation, the models can be identified problems of behavioral logic and interface matching, and be guided to complete optimization and improvement, and also it improves the rationality and effectiveness of design and modeling. The results provide a feasible reference for the SOS design of lunar exploration engineering.
-
表 1 各阶段的视图定义
Table 1. View definition for each phase
阶段 视图 定义与描述 需求分析 战略流程(St-Pr) 为实现战略目标, 在任务全流程, 明确大系统应具备的顶层能力, 以及涉及的系统组织 战略结构(St-Sr) 明确了顶层能力的组成、分解和层次结构 战略连通(St-Cn) 明确了能力结构中相互依赖关系, 使能力分解合理化 功能分析 业务分类(Op-Tx) 描述了支持能力实现的具体业务活动, 建立业务活动与主要执行者间的操作关系 业务结构(Op-Sr) 描述了业务各节点之间的连接和信息交互关系 业务流程(Op-Pr) 基于行为, 描述了业务活动执行的过程、输入输出和信息流 业务序列(Op-Sq) 基于场景对业务交换的时序进行分析和事件跟踪, 描述了关键事件的时序操作 业务状态(Op-St) 基于状态转换的过程, 描述了业务的状态、事件和操作 架构分析 资源分类(Rs-Tx) 基于功能分析描述了资源的逻辑域解决方案 架构设计 资源结构(Rs-Sr) 描述了资源接口和交互关系 资源流程(Rs-Pr) 基于行为分解, 在资源视点下描述了业务活动执行的过程、输入输出和信息流 资源追溯(Rs-Tr) 描述了资源到业务活动、资源到能力的追溯关系 表 2 关键活动参数设置
Table 2. Parameter settings of key action
关键活动 参数设置 备注 给各器上电 供电功率≥1500 W 太阳能、蓄电池 月面各器分离 释放重量≥200 kg 各器重量 器间通信 通信码速率≥1.2 kbit·s–1 UHF通信体制 -
[1] 关锋, 葛平, 周国栋, 等. MBSE发展趋势与中国探月工程并行协同论证[J]. 空间科学学报, 2022, 42(2): 183-190 doi: 10.11728/cjss2022.02.210804082GUAN Feng, GE Ping, ZHOU Guodong, et al. Development trend of MBSE and investigation of concurrent collaborative demonstration for Chinese lunar exploration program[J]. Chinese Journal of Space Science, 2022, 42(2): 183-190 doi: 10.11728/cjss2022.02.210804082 [2] 裴照宇, 刘继忠, 王倩, 等. 月球探测进展与国际月球科研站[J]. 科学通报, 2020, 65(24): 2577-2586 doi: 10.1360/TB-2020-0582PEI Zhaoyu, LIU Jizhong, WANG Qian, et al. Overview of lunar exploration and International Lunar Research Station[J]. Chinese Science Bulletin, 2020, 65(24): 2577-2586 doi: 10.1360/TB-2020-0582 [3] 裴照宇, 康焱, 马继楠, 等. 基于模型的国际月球科研站协同论证方法[J]. 航空学报, 2022, 43(12): 226066PEI Zhaoyu, KANG Yan, MA Ji’nan, et al. Model-based collaborative demonstration method for International Lunar Research Station[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(12): 226066 [4] 关锋, 葛平, 邵艳利, 等. 基于MBSE的月球科研站任务分析[J]. 航空工程进展, 2023, 14(3): 84-99GUAN Feng, GE Ping, SHAO Yanli, et al. Mission analysis of lunar scientific research station based on MBSE[J]. Advances in Aeronautical Science and Engineering, 2023, 14(3): 84-99 [5] 郑朔昉, 何瑞恒, 任文明. 基于UAF建模的装备标准集生成技术研究[J]. 系统仿真学报, 2021, 33(7): 1534-1541ZHENG Shuofang, HE Ruiheng, REN Wenming. Research on generating technology for equipment standard set based on UAF modeling[J]. Journal of System Simulation, 2021, 33(7): 1534-1541 [6] 刘婧婷, 郭继坤. 基于UAF元模型的战区联合作战精确保障体系构建方法[J]. 系统工程与电子技术, 2020, 42(6): 1324-1331 doi: 10.3969/j.issn.1001-506X.2020.06.16LIU Jingting, GUO Jikun. Establishment of efficient support system for joint operations in theater command based on DMM of UAF[J]. Systems Engineering and Electronics, 2020, 42(6): 1324-1331 doi: 10.3969/j.issn.1001-506X.2020.06.16 [7] 陆志沣, 何舒, 杜君南, 等. 基于UAF的航母编队防空反导作战体系结构建模[J]. 舰船电子工程, 2023, 43(11): 96-101 doi: 10.3969/j.issn.1672-9730.2023.11.019LU Zhifeng, HE Shu, DU Junnan, et al. Research on architecture modeling of air defense and anti-missile operation of aircraft carrier formation based on UAF[J]. Ship Electronic Engineering, 2023, 43(11): 96-101 doi: 10.3969/j.issn.1672-9730.2023.11.019 [8] 苗学问, 董骁雄, 钱征文, 等. 基于DoDAF的航空装备智能保障系统体系结构建模[J]. 系统工程与电子技术, 2024, 46(2): 640-648MIAO Xuewen, DONG Xiaoxiong, QIAN Zhengwen, et al. Architecture modeling of aviation equipment intelligent support system based on DoDAF[J]. Systems Engineering and Electronics, 2024, 46(2): 640-648 [9] 高悦, 茹乐, 迟文升, 等. 基于体系结构设计的空战系统任务元模型建模[J]. 系统工程与电子技术, 2021, 43(11): 3229-3238 doi: 10.12305/j.issn.1001-506X.2021.11.23GAO Yue, RU Le, CHI Wensheng, et al. Task meta-model modeling of air combat system based on system architecture design[J]. Systems Engineering and Electronics, 2021, 43(11): 3229-3238 doi: 10.12305/j.issn.1001-506X.2021.11.23 [10] 王雨农, 毕文豪, 张安, 等. 基于DoDAF的民机MBSE研制方法[J]. 系统工程与电子技术, 2021, 43(12): 3579-3585 doi: 10.12305/j.issn.1001-506X.2021.12.20WANG Yunong, BI Wenhao, ZHANG An, et al. DoDAF-based civil aircraft MBSE development method[J]. Systems Engineering and Electronics, 2021, 43(12): 3579-3585 doi: 10.12305/j.issn.1001-506X.2021.12.20 [11] 焦洪臣, 雷勇, 张宏宇, 等. 基于MBSE的航天器系统建模分析与设计研制方法探索[J]. 系统工程与电子技术, 2021, 43(9): 2516-2525 doi: 10.12305/j.issn.1001-506X.2021.09.19JIAO Hongchen, LEI Yong, ZHANG Hongyu, et al. Research on modeling and design method of spacecraft system based on MBSE[J]. Systems Engineering and Electronics, 2021, 43(9): 2516-2525 doi: 10.12305/j.issn.1001-506X.2021.09.19 [12] 黄冉, 武新峰, 崔桂玲, 等. 基于UAF的载人航天体系框架设计与建模[J]. 载人航天, 2023, 29(6): 711-719 doi: 10.3969/j.issn.1674-5825.2023.06.001HUANG Ran, WU Xinfeng, CUI Guiling, et al. Architecture design and modeling of manned space mission based on UAF[J]. Manned Spaceflight, 2023, 29(6): 711-719 doi: 10.3969/j.issn.1674-5825.2023.06.001 [13] 赵毓, 王慎泉, 王平, 等. 载人月球探测混合云架构体系仿真系统研究[J]. 宇航学报, 2024, 45(1): 21-34 doi: 10.3873/j.issn.1000-1328.2024.01.003ZHAO Yu, WANG Shenquan, WANG Ping, et al. Research on the hybrid cloud architecture simulation system for manned lunar exploration systems[J]. Journal of Astronautics, 2024, 45(1): 21-34 doi: 10.3873/j.issn.1000-1328.2024.01.003 [14] ABHAYA L. UAF (Unified Architecture Framework) Based MBSE (UBM) method to build a system of systems model[J]. INCOSE International Symposium, 2021, 31(1): 227-241 doi: 10.1002/j.2334-5837.2021.00835.x [15] TORKJAZI M, RAZ A K. A taxonomy for system of autonomous systems[C]//2022 17th Annual System of Systems Engineering Conference (SOSE). Rochester: IEEE, 2022: 198-203 [16] BANKAUSKAITE J, MORKEVICIUS A. Towards an automated UAF-based trade study process for system of systems architecture[J]. INCOSE International Symposium, 2020, 30(1): 391-405 doi: 10.1002/j.2334-5837.2020.00729.x [17] MARTIN J N, O’NEIL D P. Enterprise architecture guide for the Unified Architecture Framework (UAF)[J]. INCOSE International Symposium, 2021, 31(1): 242-263 doi: 10.1002/j.2334-5837.2021.00836.x [18] HAUSE M, KIHLSTRÖM L O. An elaboration of service views within the UAF[J]. INCOSE International Symposium, 2021, 31(1): 728-742 doi: 10.1002/j.2334-5837.2021.00865.x [19] EICHMANN O C, MELZER S, GOD R. Model-based development of a system of systems using Unified Architecture Framework (UAF): a case study[C]//2019 IEEE International Systems Conference (SysCon). Orlando, FL, USA: IEEE, 2019: 1-8 [20] BOGGERO L, CIAMPA P D, NAGEL B. An MBSE architectural framework for the agile definition of complex system architectures[C]//AIAA Aviation 2022 Forum, Chicago, USA: AIAA, 2022 [21] GRANDE M L, PATEL A S, DURBIN L D, et al. Modeling architectures and parameterization for spacecraft[C]//AIAA Scitech 2020 Forum. Orlando, USA: AIAA, 2020 [22] WATSON-MORGAN L, HAWKINS L, JACOBS B, et al. NASA’s Artemis human landing systems[C]//2022 IEEE Aerospace Conference. Big Sky: IEEE, 2022: 1-7 [23] FOUSTJ. Gateway or bust: NASA’s plan for a 2024 lunar landing depends on a much-criticized orbital outpost[J]. IEEE Spectrum, 2019, 56(7): 32-37 doi: 10.1109/MSPEC.2019.8747310 [24] FAKIH M, KLEMP O, PUCH S, et al. A modeling methodology for collaborative evaluation of future automotive innovations[J]. Software and Systems Modeling, 2021, 20(5): 1587-1608 doi: 10.1007/s10270-021-00864-3 -
-