留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于SegRNN的热层大气密度经验模型校准

曹庆鹏 黄柳朋 韦春博 谷德峰

曹庆鹏, 黄柳朋, 韦春博, 谷德峰. 基于SegRNN的热层大气密度经验模型校准[J]. 空间科学学报. doi: 10.11728/cjss2025.06.2024-0179
引用本文: 曹庆鹏, 黄柳朋, 韦春博, 谷德峰. 基于SegRNN的热层大气密度经验模型校准[J]. 空间科学学报. doi: 10.11728/cjss2025.06.2024-0179
CAO Qingpeng, HUANG Liupeng, WEI Chunbo, GU Defeng. Calibration of Thermospheric Atmospheric Density Empirical Model Based on SegRNN (in Chinese). Chinese Journal of Space Science, 2025, 45(6): 1460-1470 doi: 10.11728/cjss2025.06.2024-0179
Citation: CAO Qingpeng, HUANG Liupeng, WEI Chunbo, GU Defeng. Calibration of Thermospheric Atmospheric Density Empirical Model Based on SegRNN (in Chinese). Chinese Journal of Space Science, 2025, 45(6): 1460-1470 doi: 10.11728/cjss2025.06.2024-0179

基于SegRNN的热层大气密度经验模型校准

doi: 10.11728/cjss2025.06.2024-0179 cstr: 32142.14.cjss.2024-0179
基金项目: 中山大学中央高校基本科研业务费专项资金项目资助
详细信息
    作者简介:
    • 曹庆鹏 男, 1998年6月出生于黑龙江省牡丹江市, 现就读于中山大学人工智能学院计算机技术专业, 主要研究方向为热层大气密度经验模型校准. E-mail: caoqingpengpeng11@126.com
    通讯作者:
    • 谷德峰 男, 1980年8月出生, 现为中山大学教授、博导, 人工智能学院副院长, 主要研究方向为低/中/高轨多类卫星及其编队轨道确定, 系统误差建模抑制, 时空序列智能预测. E-mail: gudefeng@mail.sysu.edu.cn
  • 中图分类号: P353

Calibration of Thermospheric Atmospheric Density Empirical Model Based on SegRNN

  • 摘要: 大气阻力是低轨卫星受到的最大非引力摄动, 大气阻力的计算误差主要来源于热层大气密度经验模型误差, 目前经验模型的误差较大, 普遍在30%以上. 为提高经验模型的预报精度, 提出一种基于SegRNN (Segment Recurrent Neural Network)的热层大气密度经验模型校准方法. 该方法使用SegRNN的分块和并行策略进行模型训练和推理, 避免了传统RNN (Recurrent Neural Network)因迭代次数过多而引起误差累积与梯度不稳定的问题. 通过分析大气密度与Ap, F10.7F10.7a外部环境参数的变化关系, 提出了一种改进的神经网络架构SegRNN with Residual Block. 该架构通过引入外部环境参数作为动态协变量(Covariates), 使用Residual Block (RB)提取预报时段的密度相关信息, 从而进一步提高SegRNN的预报精度. 利用GRACE (Gravity Recovery and Climate Experiment)星载加速度计反演得到的密度数据对NRLMSISE 2.0进行校准实验. 结果表明, NRLMSIS 2.0模型原始误差为31.3%, 经SegRNN校准后, 误差降低至8.0%, 引入动态协变量后, 模型误差进一步降低至7.2%, 最终校准模型误差下降了24.1%, 校准效果显著.

     

  • 图  1  NRLMSIS 2.0和GRACE-A加速度计反演的大气密度

    Figure  1.  Atmospheric density data obtained by NRLMSIS 2.0 and inversion from GRACE-A accelerometer

    图  2  测试时段的外部环境参数

    Figure  2.  External environmental parameters during testing periods

    图  3  SegRNN with Residual Block模型结构

    Figure  3.  Model architecture of SegRNN with Residual Block

    图  4  SegRNN模型结构

    Figure  4.  Model architecture of SegRNN

    图  5  Residual Block模型结构

    Figure  5.  Model architecture of Residual Block

    图  6  SegRNN和SegRNN with Residual Block模型预报结果

    Figure  6.  Prediction results of SegRNN and SegRNN with Residual Block model

    图  7  SegRNN模型预报效果

    Figure  7.  Prediction effect of SegRNN model

    图  8  NRLMSIS 2.0经验模型与SegRNN校准模型相对于GRCAE-A星载加速度密度数据的误差日均值

    Figure  8.  Daily average error of NRLMSIS 2.0 empirical model and SegRNN calibration model relative to GRCAE-A onboard acceleration density data

    表  1  神经网络模型参数选择

    Table  1.   Neural network model parameter selection

    Parameter Time/h
    1 3 6 12 24
    Seq len 768 768 768 768 768
    Pred len 12 36 72 144 288
    Seg len 6 12 12 48 96
    Num layer 1 1 1 1 1
    d model 256 256 512 512 1024
    Dropout 0.5 0.5 0 0.5 0
    Batch size 8 16 64 128 256
    Epoch 30 30 30 30 30
    Patience 6 6 6 6 6
    Learning rate 0.0001 0.0001 0.0002 0.0002 0.0004
    Loss function mse mse mse mse mse
    Optimizer Adam Adam Adam Adam Adam
    下载: 导出CSV

    表  2  神经网络模型预报误差

    Table  2.   Prediction error of neural network models

    Horizon Metric Model
    LSTM SegRNN without RB SegRNN with RB
    1 h RMSE/ (kg·m–3) 4.6×10–14 2.6×10–14 2.7×10–14
    RE/(%) 7.8 4.7 2.5
    3 h RMSE/(kg·m–3) 4.9×10–14 3.0×10–14 2.9×10–14
    RE/(%) 8.2 4.7 4.3
    6 h RMSE/(kg·m–3) 7.7×10–14 3.3×10–14 3.1×10–14
    RE/(%) 14.8 7.4 4.2
    12 h RMSE/(kg·m–3) 8.7×10–14 4.1×10–14 3.8×10–14
    RE/(%) 17.2 7.8 4.4
    24 h RMSE/(kg·m–3) 9.4×10–14 4.8×10–14 4.7×10–14
    RE/(%) 17.4 8.0 7.2
       RB为Residual Block model. RE为Relative Error. 黑体表示最小误差值.
    下载: 导出CSV
  • [1] LI Min. Research on Muti-GNSS Precise Orbit Determination Theory and Application[D]. Wuhan: Wuhan University, 2011: 63
    [2] LIU Lin. Orbit Theory of Spacecraft[M]. Beijing: National Defense Industry Press, 2000
    [3] MONTENBRUCK O, GILL E, LUTZE F. Satellite orbits: models, methods, and applications[J]. Applied Mechanics Reviews, 2002, 55(2): B27-B28 doi: 10.1115/1.1451162
    [4] LIU Shushi, GONG J C, LIU S Q, et al. Thermospheric density during geomagnetic storm based on EOF analysis[J]. Chinese Journal of Geophysics, 2013, 56(10): 3236-3245
    [5] JACCHIA L G. Revised static models of the thermosphere and exosphere with empirical temperature profiles[J]. Sao Special Report, 1971, 313(20): 3138-3144
    [6] PICONE J M, HEDIN A E, DROB D P, et al. NRLMSISE-00 empirical model of the atmosphere: statistical comparisons and scientific issues[J]. Journal of Geophysical Research, Space Physics, 2002, 107(A12): SIA 15-1-SIA 15-16
    [7] BRUINSMA S. The DTM-2013 thermosphere model[J]. Journal of Space Weather and Space Climate, 2015, 5: A1 doi: 10.1051/swsc/2015001
    [8] BRUINSMA S, THUILLIER G, BARLIER F. The DTM-2000 empirical thermosphere model with new data assimilation and constraints at lower boundary: accuracy and properties[J]. Journal of Atmospheric and Solar Terrestrial Physics, 2003, 65(9): 1053-1070 doi: 10.1016/S1364-6826(03)00137-8
    [9] BOWMAN B R, TOBISKA W K, MARCOS F A. A new empirical thermospheric density model JB2006 using new solar indices[C]//AIAA/AAS Astrodynamics Specialist Conference and Exhibit. Keystone: AIAA, 2006: 6166
    [10] BOWMAN B R, TOBISKA W K, MARCOS F A, et al. A new empirical thermospheric density model JB2008 using new solar and geomagnetic indices[C]//AIAA/AAS Astrodynamics Specialist Conference and Exhibit. Honolulu: AIAA, 2008: 6438
    [11] EMMERT J T. Thermospheric mass density: a review[J]. Advances in Space Research, 2015, 56(5): 773-824 doi: 10.1016/j.asr.2015.05.038
    [12] STORZ M F, BOWMAN B R, BRANSON M J I, et al. High accuracy satellite drag model(HASDM)[J]. Advances in Space Research, 2005, 36(12): 2497-2505 doi: 10.1016/j.asr.2004.02.020
    [13] CASALI S J, BARKER W N. Dynamic Calibration Atmosphere (DCA) for the high accuracy satellite drag model (HASDM)[C]//AIAA/AAS Astrodynamics Specialist Conference and Exhibit. Monterey: AIAA, 2013. DOI: 10.2514/6.2002-4888
    [14] LI Wenwen, LI Min, SHI Chuang, et al. Thermosphere mass density derivation using on-board accelerometer observations from GRACE satellites[J]. Chinese Journal of Geophysics, 2016, 59(9): 3159-3174
    [15] DOORNBOS E, KLINKRAD H, VISSER P. Atmospheric density calibration using satellite drag observations[J]. Advances in Space Research, 2005, 36(3): 515-521 doi: 10.1016/j.asr.2005.02.009
    [16] CEFOLA P J, PROULX R J, NAZARENKO A I, et al. Atmospheric density correction using two line element sets as the observation data[J]. Advances in the Astronautical Sciences, 2004, 116: 1953-1978
    [17] BERGSTROM S E, PROULX R J, CEFOLA P J. Atmospheric density correction using observational data[C]//AIAA/AAS Astrodynamics Specialist Conference and Exhibit. Monterey: AIAA, 2002: 4738
    [18] CHEN Xuxing, HU Xiong, XIAO Chunying, et al. Correction method of the low earth orbital neutral density prediction based on the satellites data and NRLMSISE-00 model[J]. Chinese Journal of Geophysics, 2013, 56(10): 3246-3254
    [19] PÉREZ D, BEVILACQUA R. Neural Network based calibration of atmospheric density models[J]. Acta Astronautica, 2015, 110: 58-76 doi: 10.1016/j.actaastro.2014.12.018
    [20] PÉREZ D, WOHLBERG B, LOVELL T A, et al. Orbit-centered atmospheric density prediction using artificial neural networks[J]. Acta Astronautica, 2014, 98: 9-23 doi: 10.1016/j.actaastro.2014.01.007
    [21] CHEN H R, LIU H X, HANADA T. Storm-time atmospheric density modeling using neural networks and its application in orbit propagation[J]. Advances in Space Research, 2014, 53(3): 558-567 doi: 10.1016/j.asr.2013.11.052
    [22] ZHANG Y, YU J J, CHEN J Y, et al. An empirical atmospheric density calibration model based on long short-term memory neural network[J]. Atmosphere, 2021, 12(7): 925 doi: 10.3390/atmos12070925
    [23] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780 doi: 10.1162/neco.1997.9.8.1735
    [24] ZHOU H Y, ZHANG S H, PENG J Q, et al. Informer: Beyond efficient transformer for long sequence time-series forecasting[C]//Proceedings of the 35th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI, 2021: 11106-11115
    [25] LIN S S, LIN W W, WU W T, et al. SegRNN: Segment recurrent neural network for long-term time series forecasting[OL]. (2023-08-22) [2024.12.30]. https://arxiv.org/abs/2308.11200
    [26] EMMERT J T, DROB D P, PICONE J M, et al. NRLMSIS 2.0: a whole‐atmosphere empirical model of temperature and neutral species densities[J]. Earth and Space Science, 2021, 8(3): e2020EA001321 doi: 10.1029/2020EA001321
    [27] VAN DEN IJSSEL J, VISSER P. Performance of GPS-based accelerometry: CHAMP and GRACE[J]. Advances in Space Research, 2007, 39(10): 1597-1603 doi: 10.1016/j.asr.2006.12.027
    [28] TAPPING K F. The 10.7 cm solar radio flux (F10.7)[J]. Space Weather-the International Journal of Research :Times New Roman;">& Applications, 2013, 11(7): 394-406
    [29] BARTELS J. The geomagnetic measures for the time-variations of solar corpuscular radiation, described for use in correlation studies in other geophysical fields[J]. Geomagnetism, 2013: 227-236
    [30] KNIPP D J, TOBISKA W K, EMERY B A. Direct and indirect thermospheric heating sources for solar cycles 21-23[J]. Solar Physics, 2004, 224(1/2): 495-505
    [31] GLOROT X, BORDES A, BENGIO Y. Deep sparse rectifier neural networks[J]. Journal of Machine Learning Research, 2011, 15: 315-323
    [32] SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al. Dropout: a simple way to prevent neural networks from overfitting[J]. Journal of Machine Learning Research, 2014, 15(1): 1929-1958
    [33] WU D X, WANG Y S, XIA S T, et al. Skip connections matter: On the transferability of adversarial examples generated with resnets[OL]. (2020-02-14) [2024.12. 30]. https://arxiv.org/abs/2002.05990
    [34] PASZKE A, GROSS S, MASSA F, et al. Pytorch: an imperative style, high-performance deep learning library[J]. Neural Information Processing Systems, 2019, 32: 8026-8037
    [35] CHUNG J Y, GULCEHRE C, CHO K, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling[J]. Eprint Arxiv, 2014. DOI: 10.48550/arXiv.1412.3555
    [36] KINGMA D P, BA J. Adam: A method for stochastic optimization[OL]. (2017-01-30) [2024-12-25]. https://arxiv.org/abs/1412.6980
    [37] HAN L, YE H J, ZHAN D C. The capacity and robustness trade-off: Revisiting the channel independent strategy for multivariate time series forecasting[J]. IEEE Transactions on Automatic Control, 2024, 36(11): 7129-7142
    [38] WANG Hongbo, ZHANG Mingjiang, XIONG Jianning. Effects of solar extreme ultraviolet radiation on thermospheric neutral density[J]. Chinese Journal of Space Science, 2023, 43(1): 87-100 (汪宏波, 张明江, 熊建宁. 太阳极紫外辐射对热层大气密度的影响[J]. 空间科学学报, 2023, 43(1): 87-100 doi: 10.11728/cjss2023.01.211217130

    WANG Hongbo, ZHANG Mingjiang, XIONG Jianning. Effects of solar extreme ultraviolet radiation on thermospheric neutral density[J]. Chinese Journal of Space Science, 2023, 43(1): 87-100 doi: 10.11728/cjss2023.01.211217130
    [39] WANG Xin, MIAO Juan, LIU Siqing, et al. Characteristics analysis of thermospheric density response during the different intensity of geomagnetic storms[J]. Chinese Journal of Space Science, 2020, 40(1): 28-41 (王昕, 苗娟, 刘四清, 等. 不同强度磁暴期间热层大气密度响应特征分析[J]. 空间科学学报, 2020, 40(1): 28-41 doi: 10.11728/cjss2020.01.028

    WANG Xin, MIAO Juan, LIU Siqing, et al. Characteristics analysis of thermospheric density response during the different intensity of geomagnetic storms[J]. Chinese Journal of Space Science, 2020, 40(1): 28-41 doi: 10.11728/cjss2020.01.028
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  387
  • HTML全文浏览量:  74
  • PDF下载量:  14
  • 被引次数: 

    0(来源:Crossref)

    0(来源:其他)

出版历程
  • 收稿日期:  2024-12-05
  • 修回日期:  2025-05-25
  • 网络出版日期:  2025-05-26

目录

    /

    返回文章
    返回