留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同时空分辨率地磁模型与地磁台站实测数据对比

徐玥 杨艳艳 王婕 泽仁志玛

徐玥, 杨艳艳, 王婕, 泽仁志玛. 不同时空分辨率地磁模型与地磁台站实测数据对比[J]. 空间科学学报. doi: 10.11728/cjss2025.06.2025-0001
引用本文: 徐玥, 杨艳艳, 王婕, 泽仁志玛. 不同时空分辨率地磁模型与地磁台站实测数据对比[J]. 空间科学学报. doi: 10.11728/cjss2025.06.2025-0001
XU Yue, YANG Yanyan, WANG Jie, ZEREN Zhima. Comparison of Geomagnetic Models with Different Spatio-temporal Resolutions and Measured Data from Geomagnetic Stations (in Chinese). Chinese Journal of Space Science, 2025, 45(6): 1425-1438 doi: 10.11728/cjss2025.06.2025-0001
Citation: XU Yue, YANG Yanyan, WANG Jie, ZEREN Zhima. Comparison of Geomagnetic Models with Different Spatio-temporal Resolutions and Measured Data from Geomagnetic Stations (in Chinese). Chinese Journal of Space Science, 2025, 45(6): 1425-1438 doi: 10.11728/cjss2025.06.2025-0001

不同时空分辨率地磁模型与地磁台站实测数据对比

doi: 10.11728/cjss2025.06.2025-0001 cstr: 32142.14.cjss.2025-0001
基金项目: 国家自然科学基金项目资助(42274214)
详细信息
    作者简介:
    • 徐玥 女, 1999年生, 硕士生, 主要从事张衡一号卫星磁场数据处理、地震前电离层磁异常扰动信号分析方面的研究. E-mail: xuyue222@mails.ucas.ac.cn
    通讯作者:
    • 杨艳艳 女, 1987年生, 研究员, 博士, 硕士生导师, 毕业于中国科学院国家空间科学中心, 张衡一号卫星电磁场分系统主任设计师, 主要负责全球地磁场建模及地磁场变化、近地卫星磁测数据在轨定标处理和质量评价、空间天气等方面研究工作. E-mail: youngyany@163.com
  • 中图分类号: P353.1

Comparison of Geomagnetic Models with Different Spatio-temporal Resolutions and Measured Data from Geomagnetic Stations

  • 摘要: 在近年来磁场变化较快的北极以及南大西洋异常区选取了国际地磁台网(INTERMAGNET)的4个地磁台站, 利用国际地磁参考场模型IGRF以及目前国内时空分辨率最高的多场源Swarm模型两个时空分辨率不同的全球地磁场模型, 定量研究了模型空间分辨率以及更新周期相对地磁台站实测数据的偏差. 研究结果表明: 同等更新周期情况下, 在太阳活动宁静时期, 对于岩石圈磁异常不明显的区域, IGRF和其他空间分辨率更高的地磁场模型给出的结果较为接近, 而对于岩石圈磁异常较为明显的区域, 空间分辨率更高的全球地磁场模型更接近实测值; 在IGRF未更新的5年 (2016-2020年)内, 地磁台站实测值与IGRF模型之间存在明显的时间漂移, 典型漂移可达100 nT以上, 但漂移的量值也存在地区差异, 这与地磁场全球变化不均匀有关. 相比之下, 地磁台站观测值与Swarm模型之间则未观测到明显的漂移现象. 这一结果表明, 在地磁场快速变化时期, 缩短主磁场的更新周期十分必要. 本项研究可以为全球地磁场模型的相关应用提供依据和参考.

     

  • 图  1  INTERMAGNET台站全球分布

    Figure  1.  Global distribution map of INTERMAGNET stations

    图  2  2016年3月1日HRN台站实测数据与IGRF以及Swarm模型差值

    Figure  2.  Difference between the measured data of HRN station and IGRF and Swarm model on 1 March 2016

    图  3  2016年3月1日THL台站实测数据与IGRF以及Swarm 模型差值

    Figure  3.  Difference between the measured data of THL station and IGRF and Swarm model on 1 March 2016

    图  4  2019年1月1日HRN台站实测数据与IGRF以及Swarm模型差值

    Figure  4.  Difference between the measured data of HRN station and IGRF and Swarm model on 1 Jan. 2019

    图  5  2019年1月1日THL台站实测数据与IGRF以及Swarm模型差值

    Figure  5.  Difference between the measured data of THL station and IGRF and Swarm model on 1 January 2019

    图  6  2016年3月1日VSS台站实测数据与IGRF以及Swarm模型差值

    Figure  6.  Difference between the measured data of VSS station and IGRF and Swarm model on 1 Mar. 2016

    图  9  2019年1月1日HER台站实测数据与IGRF以及Swarm模型差值

    Figure  9.  Difference between the measured data of HER station and IGRF and Swarm model on 1 Jan. 2019

    图  7  2019年1月1日VSS台站实测数据与IGRF以及Swarm模型差值

    Figure  7.  Difference between the measured data of VSS station and IGRF and Swarm model on 1 Jan. 2019

    图  8  2016年3月1日HER台站实测数据与IGRF以及Swarm模型差值

    Figure  8.  Difference between the measured data of HER station and IGRF and Swarm model on 1 Mar. 2016

    图  10  2016-2020年HRN台站实测数据与IGRF以及Swarm模型差值

    Figure  10.  Difference between the measured data of HRN station and IGRF and Swarm model from 2016 to 2020

    图  11  2016-2020年THL台站实测数据与IGRF以及Swarm模型差值

    Figure  11.  Difference between the measured data of THL station and IGRF and Swarm model from 2016 to 2020

    图  12  2016-2020年VSS台站实测数据与IGRF以及Swarm模型差值

    Figure  12.  Difference between the measured data of VSS station and IGRF and Swarm model from 2016 to 2020

    图  13  2016-2020年HER台站实测数据与IGRF以及Swarm模型差值

    Figure  13.  Difference between the measured data of HER station and IGRF and Swarm model from 2016 to 2020

    图  14  2016-2020年THL (a)台站和HER (b)台站实测数据与IGRF-13模型差值

    Figure  14.  Difference between the measured data of THL (a) and HER (b) station and IGRF-13 model from 2016 to 2020

    图  15  Swarm 高分辨率模型与INTERMAGNET全球台网实测的地磁漂移量分布 (2016-2020)

    Figure  15.  Swarm high-resolution model and the distribution of the geomagnetic drift observed by INTERMAGNET global network (2016-2020)

    图  16  IGRF标准模型与INTERMAGNET全球台站实测值的地磁长期变化漂移量分布(2016-2020)

    Figure  16.  Distributions of global geomagnetic secular variation drift between the IGRF Standard Model and INTERMAGNET measurements (2016-2020)

    表  1  5年内地磁台站观测值与IGRF模型残差值变化

    Table  1.   Change of residual values between geomagnetic station observations and IGRF models in five years

    台站 d2x/nT d2y/nT d2z/nT d2F/nT $ \dfrac{\mathrm{d}^2{\boldsymbol{F}}}{\mathrm{d}t} $/(nT·a–1)
    HRN 122.4437 106.6224 21.3245
    THL 71.1189 132.8542 137.7824 27.5565
    VSS 81.3349 –52.7932 30.5422 6.1084
    HER 107.5876 –72.2271 113.3895 167.8455 33.5691
      –表示随时间漂移不明显的分量不纳入计算.
    下载: 导出CSV

    表  2  模型与台站观测值差值的均值对比

    Table  2.   Comparison of mean values of differences between models and station observations

    模型 d2F/nT d2x/nT d2y/nT d2z/nT
    Swarm 55.2609 15.3731 39.9163 –3.8206
    IGRF 95.0589 52.9819 52.6998 25.8081
    下载: 导出CSV

    表  3  模型与台站观测值差值的绝对中位差

    Table  3.   Median Absolute Deviation between the model and the station observations

    模型d2F/nTd2x/nTd2y/nTd2z/nT
    Swarm4.167355.23524.77194.3705
    IGRF60.693239.94287533.224568.30735
    下载: 导出CSV
  • [1] ALKEN P, THÉBAULT E, BEGGAN C D, et al. International geomagnetic reference field: the thirteenth generation[J]. Earth, Planets and Space, 2020, 73(1): 49
    [2] CHULLIAT A, ALKEN P, NAIR M, et al. The US/UK World Magnetic Model for 2020-2025: Technical Report[R]. Boulder: National Centers for Environmental Information, NOAA, 2020
    [3] MAUS S, YIN F, LÜHR H, et al. Resolution of direction of oceanic magnetic lineations by the sixth‐generation lithospheric magnetic field model from CHAMP satellite magnetic measurements[J]. Geochemistry, Geophysics, Geosystems, 2008, 9(7): Q07021
    [4] OLSEN N, RAVAT D, FINLAY C C, et al. LCS-1: a high-resolution global model of the lithospheric magnetic field derived from CHAMP and Swarm satellite observations[J]. Geophysical Journal International, 2017, 211(3): 1461-1477 doi: 10.1093/gji/ggx381
    [5] THÉBAULT E, HULOT G, LANGLAIS B, et al. A spherical harmonic model of Earth’s lithospheric magnetic field up to degree 1050[J]. Geophysical Research Letters, 2021, 48(21): e2021gl095147 doi: 10.1029/2021GL095147
    [6] CHULLIAT A, VIGNERON P, HULOT G. First results from the swarm dedicated ionospheric field inversion chain[J]. Earth, Planets and Space, 2016, 68(1): 104. doi: 10.1186/s40623-016-0481-6
    [7] LAUNDAL K M, FINLAY C C, OLSEN N, et al. Solar wind and seasonal influence on ionospheric currents from swarm and champ measurements[J]. Journal of Geophysical Research: Space Physics, 2018, 123(5): 4402-4429 doi: 10.1029/2018JA025387
    [8] EGBERT G D, BENNETT A F, FOREMAN M G G. TOPEX/POSEIDON tides estimated using a global inverse model[J]. Journal of Geophysical Research Atmospheres, 1994, 99(C12): 821-852
    [9] TYLER R H, MAUS S, LÜHR H. Satellite observations of magnetic fields due to ocean tidal flow[J]. Science, 2003, 299(5604): 239-241 doi: 10.1126/science.1078074
    [10] LESUR V, WARDINSKI I, HAMOUDI M, et al. The second generation of the GFZ reference internal magnetic model: GRIMM-2[J]. Earth, Planets and Space, 2010, 62(10): 765-773 doi: 10.5047/eps.2010.07.007
    [11] MAUS S, ROTHER M, STOLLE C, et al. Third generation of the Potsdam Magnetic Model of the Earth (POMME)[J]. Geochemistry, Geophysics, Geosystems, 2006, 7(7): Q07008
    [12] OLSEN N, LÜHR H, SABAKA T J, et al. CHAOS—a model of the Earth’s magnetic field derived from CHAMP, Ørsted, and SAC-C magnetic satellite data[J]. Geophysical Journal International, 2006, 166(1): 67-75 doi: 10.1111/j.1365-246X.2006.02959.x
    [13] FINLAY C C, KLOSS C, OLSEN N, et al. The CHAOS-7 geomagnetic field model and observed changes in the South Atlantic Anomaly[J]. Earth, Planets and Space, 2020, 72(1): 156 doi: 10.1186/s40623-020-01252-9
    [14] SABAKA T J, TØFFNER-CLAUSEN L, OLSEN N, et al. CM6: a comprehensive geomagnetic field model derived from both CHAMP and Swarm satellite observations[J]. Earth, Planets and Space, 2020, 72(1): 80 doi: 10.1186/s40623-020-01210-5
    [15] MAUS S, NAIR M C, POEDJONO B, et al. High definition geomagnetic models: a new perspective for improved wellbore positioning[C]//IADC/SPE Drilling Conference and Exhibition. San Diego, California, USA: SPE, 2012
    [16] YANG Y Y, HULOT G, VIGNERON P, et al. The CSES Global Geomagnetic field Model (CGGM): an IGRF-type global geomagnetic field model based on data from the China Seismo-Electromagnetic Satellite[J]. Earth, Planets and Space, 2021, 73(1): 1-21 doi: 10.1186/s40623-020-01323-x
    [17] YANG Yanyan, ZEREN Zhima, SHEN Xuhui, et al. Global geomagnetic field modeling based on Swarm Alpha magnetic field measurement[J]. Chinese Journal of Geophysics, 2024, 67(5): 1881-1890 (杨艳艳, 泽仁志玛, 申旭辉, 等. 基于Swarm卫星磁测数据的全球多场源地磁场建模[J]. 地球物理学报, 2024, 67(5): 1881-1890

    YANG Yanyan, ZEREN Zhima, SHEN Xuhui, et al. Global geomagnetic field modeling based on Swarm Alpha magnetic field measurement[J]. Chinese Journal of Geophysics, 2024, 67(5): 1881-1890
    [18] WANG Q, ZHENG C, WU P L, et al. Geomagnetic/inertial navigation integrated matching navigation method[J]. Heliyon, 2022, 8(11): e11249 doi: 10.1016/j.heliyon.2022.e11249
    [19] MAUS S, BARCKHAUSEN U, BERKENBOSCH H, et al. EMAG2: A 2–arc min resolution Earth magnetic anomaly grid compiled from satellite, airborne, and marine magnetic measurements[J]. Geochemistry, Geophysics, Geosystems, 2009, 10(8): Q08005
    [20] POEDJONO B, BECK N, BUCHANAN A, et al. Improved geomagnetic referencing in the arctic environment[C]//SPE Arctic and Extreme Environments Technical Conference and Exhibition. Moscow, Russia: SPE, 2013
    [21] THÉBAULT E, FINLAY C C, BEGGAN C D, et al. International geomagnetic reference field: the 12th generation[J]. Earth, Planets and Space, 2015, 67(1): 79 doi: 10.1186/s40623-015-0228-9
    [22] HULOT G, SABAKA T J, OLSEN N, et al. The present and future geomagnetic field[M]. Treatise on Geophysics (Second Edition), . Amsterdam: Elsevier, 2015, 5: 33-78
  • 加载中
图(16) / 表(3)
计量
  • 文章访问数:  341
  • HTML全文浏览量:  40
  • PDF下载量:  14
  • 被引次数: 

    0(来源:Crossref)

    0(来源:其他)

出版历程
  • 收稿日期:  2025-01-01
  • 修回日期:  2025-05-13
  • 网络出版日期:  2025-05-15

目录

    /

    返回文章
    返回