Volume 36 Issue 6
Nov.  2016
Turn off MathJax
Article Contents
TIAN Feng, HU Xiong, WU Ji. Research Progress and Prospect of Exoplanetary Atmospheres and Habitable Exoplanet Sciences[J]. Journal of Space Science, 2016, 36(6): 815-827. doi: 10.11728/cjss2016.06.815
Citation: TIAN Feng, HU Xiong, WU Ji. Research Progress and Prospect of Exoplanetary Atmospheres and Habitable Exoplanet Sciences[J]. Journal of Space Science, 2016, 36(6): 815-827. doi: 10.11728/cjss2016.06.815

Research Progress and Prospect of Exoplanetary Atmospheres and Habitable Exoplanet Sciences

doi: 10.11728/cjss2016.06.815
  • Received Date: 2016-02-01
  • Rev Recd Date: 2016-03-15
  • Publish Date: 2016-11-15
  • The most fundamental question driving the search and characterization of exoplanets is whether life and habitable planets are ubiquitous. More than 3000 exoplanets have been discovered since 1995, about 20 of which are potentially habitable and this number could be increased dramatically in the next decade. Observation of the atmospheres of potentially habitable exoplanets is becoming the hot spot in planetary sciences. In this review we summarize the research progress regarding exoplanetary atmospheres and propose a practical roadmap, the implementation of which could accelerate the development of exoplanetary sciences in China in the near future.

     

  • loading
  • [1]
    National Aeronautics and Space Administration. NASA Strategic plan 2014[OL].[2016-04-30]. www.nasa.gov/sites/default/files/files/FY2014_NASA_SP_508c.pdf
    [2]
    Exoplanet team. The Extrasolar Planets Encyclopaedia[OL].[2016-05-31]. http://www.exoplanet.eu
    [3]
    MAYOR M, QUELOZ D. A Jupiter-mass companion to a Solar-type star[J]. Nature, 1995, 378(6555):355-359
    [4]
    CHARBONNEAU D, BROWN T M, NOYES R W, et al. Detection of an extrasolar planet atmosphere[J]. Astrophys. J., 2008, 568(1):377-384
    [5]
    MAO S, PACZYNSKI B. Gravitational microlensing by double stars and planetary systems[J]. Astrophys. J., 1991, 374(2):L37-L40
    [6]
    GOULD A, LOEB A. Discovering planetary systems through gravitational Microlenses[J]. Astrophys. J., 1992, 396(1):104-114
    [7]
    MAROIS C, MACINTOSH B, BARMAN T, et al. Direct imaging of multiple planets orbiting the star HR 8799[J]. Science, 2008, 322(5906):1348-1352
    [8]
    LIU C, BAILER-JONES C A L, SORDO R, et al. The expected performance of stellar parameterization with Gaia spectrophotometry[J]. Mon. Notic. Roy. Astron. Soc., 2012, 426(3):2463
    [9]
    SEAGER S, BAINS W. The search for signs of life on exoplanets at the interface of chemistry and planetary science[J]. Sci. Adv., 2015, 1(2):1500047
    [10]
    KASTING J F, WHITMIRE D P, REYNOLDS R T. Habitable zones around main sequence stars[J]. Icarus, 1993, 101(1):108-128
    [11]
    LECONTE J, FORGET F, CHARNAY B, et al. Increased insolation threshold for runaway greenhouse processes on Earth-like planets[J]. Nature. 2013, 504(7479):268-271
    [12]
    HU Yongyun. Atmosphere and climate of extra Solar planets. Chin. J. Atmos. Sci., 2013, 37(2):451-446(胡永云. 太阳系外行星大气与气候[J]. 大气科学, 2013, 37(2):451-466)
    [13]
    YANG J, COWAN N B, ABBOT D S. Stabilizing cloud feedback dramatically expands the habitable zone of tidally locked planets[J]. Astrophys. J. Lett., 2013, 771(2):332-341
    [14]
    KOPPARAPU R K, RAMIREZ R M,SCHOTTELKOTTE J, et al. Habitable zones around main-sequence stars:dependence on planetary mass[J]. Astrophys. J. Lett., 2014, 787(2):1664-1674
    [15]
    FENG T, IDA S. Water content of Earth-mass planets around M dwarfs[J]. Nature Geosci., 2015, 8(3):177
    [16]
    BUCHAVE L A, BIZZARRO M,LATHAM D W, et al. Three regimes of extrasolar planet radius inferred from host star metallicities[J]. Nature, 2014, 509(7502):593-595
    [17]
    RAUER H, CATALA C, AERTS C, et al. The PLATO 2.0 mission[J]. Exp. Astron., 2014, 38(1):249-330
    [18]
    COWAN B, AGOL E, MEADOWS V S, et al. Alien maps of an ocean-bearing world[J]. Astrophys. J., 2009, 700(2):915-923
    [19]
    ANGLADA-ESCUDE G, AMADO P J, BARNES J, et al. A terrestrial planet candidate in a temperate orbit around Proxima Centauri[J]. Nature, 2016, 536:437. DOI: 10.1038/nature19106
    [20]
    RICKER G R. The transiting exoplanet survey satellite mission[J]. JAAVSO, 2014, 42(1):234
    [21]
    BROEG C, FORTIER A, EHRENREICH D, et al. CHEOPS:a transit photometry mission for ESA's small mission[J]. Hot Planets Cool Stars, 2013, 47:03005
    [22]
    TIAN Lei, JI Jianghui. Current Investigations on Exoplanetary Atmospheres[J]. Progress Astron., 2015, 33(1):27-43(田蕾, 季江徽. 系外行星大气研究现状[J]. 天文学进展, 2015, 33(1):27-43)
    [23]
    ACKERMAN A S, MARLEY M S. Precipitating condensation clouds in substellar atmospheres[J]. Astrophys. J., 2001, 556(2):872-884
    [24]
    SHOWMAN A P, GUILLOT T. Atmospheric circulation and tides of "51 Pegasus b-like" planets[J]. Astron. Astrophys., 2002, 385(1):166-180
    [25]
    CHO J Y, MENOU K, HANSEN B, et al. The changing face of the extrasolar giant planet HD 209458b[J]. Astrophys. J., 2002, 587(2):L117-L120
    [26]
    BROWN T M. Transmission spectra as diagnostics of extrasolar giant planet atmospheres[J]. Astrophys. J., 2001, 553(2):1006-1026
    [27]
    HUBBARD W B, FORTNEY J J, LUNINE J I, et al. Theory of extrasolar giant planet transits[J]. Astrophys. J., 2001, 560(1):413-419
    [28]
    SEAGER S, SASSELOV D D. Theoretical transmission spectra during extrasolar giant planet transits[J]. Astrophys. J., 1999, 537(2):916-921
    [29]
    EHRENREICH D, TINETTI G, ETANGS A L D, et al. The transmission spectrum of Earth-size transiting planets[J]. Astron. Astrophys., 2005, 448(1):379-394
    [30]
    KALTENEGGER L, TRAUB W A, JUCKS K W. Spectral evolution of an Earth-like planet[J]. Astrophys. J., 2006, 658(1):598-616
    [31]
    MARLEY M S, GELINO C, STEPHENS D, et al. Reflected spectra and albedos of extrasolar giant planets. I. Clear and cloudy atmospheres[J]. Astrophys. J., 1998, 513(2):879-893
    [32]
    BURROWS A S. Highlights in the study of exoplanet atmospheres[J]. Nature, 2014, 513(7518):345-353
    [32]
    SUDARSKY D, BURROWS A, PINTO P. Albedo and reflection spectra of extrasolar giant planets[J]. Astrophys. J., 2000, 538(2):885-903
    [34]
    SING D K, FORTNEY J J,NIKOLOV N, et al. A continuum from clear to cloudy hot-Jupiter exoplanets without primordial water depletion[J]. Nature, 2015, 529(7584):59
    [35]
    KOK R J D, BROGI M, SNELLEN I A G, et al. Detection of carbon monoxide in the high-resolution day-side spectrum of the exoplanet HD 189733b[J]. Physics, 2013, 554(6):393-403
    [36]
    SING D K, DESERT J M, FORTNEY J J, et al. Gran Telescopio Canarias OSIRIS transiting exoplanet atmospheric survey:detection of potassium in XO-2b from narrowband spectrophotometry[J]. Astron. Astrophys, 2011, 527(9):793-797
    [37]
    PONT F, KNUTSON H A, GILLILAND R L M, et al. Detection of atmospheric haze on an extrasolar planet:the 0.55~1.05μm transmission spectrum of HD 189733b with the Hubble Space Telescope[J]. Mon. Not. R. Astron. Soc., 2008, 385(1):109-118
    [38]
    PONT F, SING D K, GIBSON N P, et al. The prevalence of dust on the exoplanet HD 189733b from Hubble and Spitzer observations[J]. Mon. Not. R. Astron. Soc., 2012, 432(4):2917-2944
    [39]
    SEAGER S, RICHARDSON L J, HANSEN B M S, et al. On the dayside thermal emission of hot jupiters[J]. Astrophys. J., 2005, 632(2):1122-1131
    [40]
    TINETTI G, VIDAL-MADJAR A, LIANG M C, et al. Water vapour in the atmosphere of a transiting extrasolar planet[J]. Nature, 2007, 448(7150):169-171
    [41]
    BARMAN T. Identification of absorption features in an extrasolar planet atmosphere[J]. Astrophys. J., 2007, 661(2):L191-L194
    [42]
    SWAIN M R, VASISHT G, TINETTI G, et al. Molecular signatures in the near-Infrared dayside spectrum of HD189733b[J]. Astrophys. J. Lett., 2008, 690(2):L114-L117
    [43]
    SWAIN M R, TINETTI G, VASISHT G, et al. Water, methane, and carbon dioxide present in the dayside spectrum of the exoplanet HD 209458b[J]. Astrophys. J., 2009, 704(2):1511-1516
    [44]
    MADHUSUDHAN N, SEAGER S. On the inference of thermal inversions in hot Jupiter atmospheres[J]. Astrophys. J., 2010, 725(1):261-274
    [45]
    MADHUSUDHAN N, HARRINGTON J, STEVENSON K B, et al. A high C/O ratio and weak thermal inversion in the atmosphere of exoplanet WASP-12b[J]. Nature, 2011, 469(7328):64-67
    [46]
    LEE J M, FLETCHER L N, IRWIN P G J. Optimal estimation retrievals of the atmospheric structure and composition of HD189733b from secondary eclipse spectroscopy[J]. MNRAS, 2011, 420(1):170-182
    [47]
    LINE M R, ZHANG X, VAISHT G, et al. Information Content of Exoplanetary Transit Spectra:An Initial Look[J]. Astrophys. J., 2011, 749(1):1277-1281
    [48]
    WOLF E T, TOON O B. The evolution of habitable climates under the brightening Sun[J]. J. Geophys. Res. Atmos., 2015, 120(12):5775-5794. DOI: 10.1002/2015JD023302.
    [49]
    LU Yan. Modern Astrophysics[M]. Beijing:Peking University Press, 2014(陆埮. 现代天体物理[M]. 北京:北京大学出版社, 2014)
    [50]
    WANG W, BOEKEL R V,MADHUSUDHAN N, et al. Ground-based detections of thermal emission from the dense hot Jupiter WASP-43b in H and Ks-bands[J]. Astrophys. J., 2013, 806(2):8
    [51]
    CHEN G, BOEKEL R V, WANG H, et al. Broad-band transmission spectrum and K-band thermal emission of WASP-43b as observed from the ground[J]. Astron. Astrophys., 2014, 563(3):242-251
    [52]
    CHEN G, BOEKEL R V, WANG H, et al. Observed spectral energy distribution of the thermal emission from the dayside of WASP-46b[J]. Astron. Astrophys., 2014, 567(2):196
    [53]
    (窦江培, 朱永田, 任德清. 太阳系外行星的研究现状[J]. 自然杂志, 2014, 36(2):124-128

    DOU Jiangpei, ZHU Yongtian, REN Deqing. Current research status of exoplanets[J]. Chin. J. Nature, 2014, 36(2):124-128
    [54]
    HU Y, DING F. Radiative constraints on the habitability of exoplanets Gliese 581c and Gliese 581d[J]. Astron. Astrophys., 2011, 526:A135
    [55]
    FENG T. Atmospheric Pressure and CO2 Concentration of Potential Habitable Planet HD40307g[J]. Sci. China Earth Sci., 2014, 57(6):1403-1406
    [56]
    HU Y, YANG J. Role of ocean heat transport in climates of tidally locked exoplanets around M dwarf stars[J]. Proc. Nat. Acad. Sci. USA, 2013, 111(2):629-634
    [57]
    WANG Y W, TIAN F, HU Yongyun. Climate patterns of habitable exoplanets in eccentric orbits around M dwarfs[J]. Astrophys. J. Lett., 2014, 791:L12
    [58]
    TIAN F, FRANCE K, LINSKY J L, et al. High stellar FUV/NUV ratio and oxygen contents in the atmospheres of potentially habitable planets[J]. Earth Planet. Sci. Lett, 2014, 385(1):22-27
    [59]
    TIAN F. Observations of exoplanets in time-evolving habitable zones of pre-main-sequence M dwarfs[J]. Icarus, 2015, 258:50-53
    [60]
    TIAN F. History of water loss and atmospheric O2 buildup on rocky exoplanets near m dwarfs[J]. Earth Planet. Sci. Lett., 2015, 432:126-132
    [61]
    TIAN F, KASTING J F, LIU H, et al. Hydrodynamic planetary thermosphere model:1. The response of the Earth's thermosphere to extreme solar EUV conditions and the significance of adiabatic cooling[J]. J. Geophys. Res., 2008, 113(E5). DOI: 10.1029/2007JE002946
    [62]
    TIAN F, S C SOLOMON, L QIAN, et al. Hydrodynamic planetary thermosphere model:2. Coupling of an electron transport/energy deposition model[J]. J. Geophys. Res., 2008, 113(E7):3562-3585
    [63]
    TIAN F. Atmospheric pressure and CO2 concentration of potential habitable planet HD40307g[J]. Sci. China:Earth Sci., 2014, 57(6):1403-1406
    [64]
    TIAN F. Conservation of total escape from hydrodynamic planetary atmospheres[J]. Earth Planet. Sci. Lett, 2013, 379(5):104-107
    [65]
    TIAN F. Thermal escape from super Earth atmospheres in the habitable zones of M stars[J]. Astrophys. J., 2009, 703(1):905-909
    [66]
    TIAN F. Atmosphere escape from solar system terrestrial planets and exoplanets[J]. Ann. Rev. Earth Planet. Sci., 2013, 43(1):15.1-15.18
    [67]
    GUO J H. Escaping particle fluxes in the atmospheres of close-in exoplanets. I. Model of hydrogen[J]. Astrophys. J., 2011, 733:98107
    [68]
    GUO J H. Escaping particle fluxes in the atmospheres of close-in exoplanets. Ⅱ. Reduced mass-loss rates and anisotropic winds[J]. Astrophys. J., 2013, 766(2):38
    [69]
    TIAN T L F. Detection of O2 produced abiotically on habitable but lifeless planets around M-dwarfs[J]. Proc. Int. Astron. Union, 2012, 8(S293):39-45
    [70]
    WANG Y W, TIAN F, LI L, et al. On the detection of carbon monoxide as an anti-biosignature in exoplanetary atmospheres[J]. Icarus, 2015, 266(12):15-23
    [71]
    LI T, TIAN F, WANG Yuwei, et al. Distinguishing a hypothetical abiotic planet-moon system from a single inhabited planet[J]. Astrophys. J., 2016, 817:L15
    [72]
    CHARBONNEAU D, ALLEN L E, MEGEATH S T, et al. Detection of thermal emission from an extrasolar planet[J]. Astrophys. J., 2005, 626(1):523-529
    [73]
    DEMING D, SEAGER S, et al. Infrared radiation from an extrasolar planet[J]. Nature, 2005, 434(7034):740-743
    [74]
    GRILLMAIR C J, CHARBONNEAU D, BURROWS A, et al. A Spitzer spectrum of the exoplanet HD 189733b[J]. Astrophys. J., 2007, 658(2):L115-L118
    [75]
    GRILLMAIR C J, BURROWS A, CHARBONNEAU D, et al. Strong water absorption in the dayside emission spectrum of the planet HD189733b[J]. Nature, 2008, 456(7223):767-769
    [76]
    BURROWS A, HUBENY I, SUDARSKY D. A theoretical interpretation of the measurements of the secondary eclipses of TrES-1 and HD 209458b[J]. Astrophys. J., 2005, 625(2):125-128
    [77]
    COWAN N B, AGOL E. Inverting phase functions to map exoplanets[J]. Astrophys. J., 2008, 678(2):L129-L132
    [78]
    COWAN N B, AGOL E. A model for thermal phase variations of circular and eccentric exoplanets[J]. Astrophys. J., 2010, 726(2):380-391
    [79]
    KNUTSON H A, CHARBONNEAU D, ALLEN L E, et al. A map of the day-night contrast of the extrasolar planet HD 189733b[J]. Nature, 2007, 447(7141):183-186
    [80]
    SHOWMAN A P, FORTNEY J J, YUAN L, et al. Atmospheric circulation of hot Jupiters:coupled radiative-dynamical general circulation model simulations of Hd 189733b and HD 209458b[J]. Astrophys. J., 2009, 699(1):564-584
    [81]
    KNUTSON H A, LEWIS N, FORTNEY J J, et al. 3.6 and 4.5μm phase curves and evidence for non-equilibrium chemistry in the atmosphere of extrasolar planet HD 189733b[J]. Astrophys. J., 2012, 754(1):22-37
    [82]
    MAJEAU C, AGOL E, COWAN N B. A two-dimensional map of the extrasolar planet HD 189733b[J]. Astrophys. J Lett., 2012, 757(2):L20-L24
    [83]
    KNUTSON H A, CHARBONNEAU D, NICOLAS B, et al. The 8μm phase variation of the hot Saturn HD 149026b[J]. Astrophys. J., 2009, 703:769-784
    [84]
    COWAN N B, AGOL E. The statistics of Albedo and heat recirculation on hot exoplanets[J]. Astrophys. J., 2011, 729(1):2770-2791
    [85]
    COWAN N B, MACHALEK P, CROLL B, et al. Thermal phase variations of WASP-12b:defying predictions[J]. Astrophys. J., 2012, 747(1):833
    [86]
    LEWIS N K, KNUTSON H A,SHOWMAN A P, et al. Orbital phase variations of the eccentric giant planet HAT-P-2b[J]. Astrophys. J., 2013, 766(2):95-117
    [87]
    HARRINGTON J, HANSEN B M, LUSZCZ S H, et al. The phase-dependent infrared brightness of the extrasolar planet upsilon Andromedae b[J]. Science, 2006, 314(5799):623-626
    [88]
    CROSSFIELD I J M, HANSEN B M S, HARRINGTON J, et al. A new 24 micron phase curve for upsilon Andromedae b[J]. Astrophys. J., 2010, 723:1436-1446
    [89]
    REDFIELD S, LINSKY J L. The structure of the local interstellar medium. IV. Dynamics, morphology, physical properties, and implications of cloud-cloud interactions[J]. Astrophys. J., 2007, 673(1):283-314
    [90]
    WOOD P L, MAXTED P F L, SMALLEY B, et al. Transmission spectroscopy of the sodium ‘D’ doublet in WASP-17b with the VLT star[J]. Mon. Notic. Roy. Astron. Soc., 2011, 412(4):2376-2382
    [91]
    HUITSON C M, SING D K, VIDAL-MADJAR A, et al. Temperature-pressure profile of the hot Jupiter HD 189733b from HST sodium observations:detection of upper atmospheric heating[J]. MNRAS, 2012, 422(3):2477-2488
    [92]
    BEAN J L, KEMPTON E M, HOMEIER D. A ground-based transmission spectrum of the super-Earth exoplanet GJ 1214b[J]. Nature, 2010, 468(7324):669-672
    [93]
    DESERT J M, BEAN J, KEMPTON M R, et al. Observational evidence for a metal-rich atmosphere on the Super-Earth GJ1214b[J]. Astrophys. J. Lett., 2011, 731(2):67-72
    [94]
    BERTA Z K, CHARBONNEAU D, DÉSERT J M, et al. The flat transmission spectrum of the Super-Earth GJ1214b from wide field camera-3 on the Hubble space telescope[J]. Astrophys. J., 2012, 747(1):833
    [95]
    FORTNEY J J, MORDASINI C, NETTELMANN N, et al. A framework for characterizing the atmospheres of low-mass low-density transiting planets[J]. Astrophys. J., 2013, 775(1):162-170
    [96]
    KREIDBERG L, BEAN J L, DÉSERT J M, et al. Clouds in the atmosphere of the super-Earth exoplanet GJ 1214b[J]. Nature, 2014, 505(7481):69-72
    [97]
    KNUTSON H A, BENNEKE B, DEMING D, et al. A featureless transmission spectrum for the Neptune-mass exoplanet GJ 436b[J]. Nature, 2014, 505(7481):66-68
    [98]
    DEMING D, WILKINS A, MCCULLOUGH P, et al. Infrared transmission spectroscopy of the exoplanets HD 209458b and XO-1b using the wide field camera-3 on the Hubble space telescope[J]. Astrophys. J., 2013, 774(2):1201-1205
    [99]
    ROBINSON T D, MALTAGLIATI L, MARLEY M S, et al. Titan solar occultation observations reveal transit spectra of a hazy world[J]. Proc. Nat. Acad. Sci. United States Am., 2014, 111(25):9042-9047
    [100]
    BURROWS A, IBGUI L, HUBENY I, et al. Optical albedo theory of strongly irradiated giant planets:the case of HD 209458b[J]. Astrophys. J., 2008, 682(2):1277-1282
    [101]
    KNUTSON H A, CHARBONNEAU D, ALLEN L E, et al. The 3.6~8.0μm broadband emission spectrum of HD 209458b:evidence for an atmospheric temperature inversion[J]. Astrophys. J., 2007, 673(1):526-531
    [102]
    HUBENY I, BURROWS A, SUDARSKY D. A possible bifurcation in atmospheres of strongly irradiated stars and planets[J]. Astrophys. J., 2015, 594(2):1011-1018.
    [103]
    FORTNEY J J, SAUMON D, MARLEY M S, et al. Atmosphere, interior, and evolution of the metal-rich transiting planet HD 149026b[J]. Astrophys. J., 2005, 642(1):495-504
    [104]
    ZAHNLE K, MARLEY M S, FREEDMAN R S, et al. Atmospheric sulfur photochemistry on hot jupiters[J]. Astrophys. J., 2009, 701(1):L20-L24
    [105]
    VIDAL-MADJAR A, DES ETANGS A L, DÉSERT J M, et al. An extended upper atmosphere around the extrasolar planet HD209458b[J]. Nature, 2003, 422(6928):143-146
    [106]
    DES ETANGS A L, EHRENREICH D, et al. Evaporation of the planet HD 189733b observed in H I Lyman-alpha[J]. Astron. Astrophys., 2010, 514(10):2083-2096
    [107]
    FOSSATI L, HASWELL C A, FRONING C S, et al. Metals in the EXOSPHERE OF THE HIGHLY IRRADIATED PLANET Wasp-12b[J]. Astrophys. J., 2010, 714(2):L222-L227
    [108]
    KULOW J R, FRANCE K, LINSKY J, et al. Lyman-α transit spectroscopy and the neutral hydrogen tail of the hot Neptune GJ 436b[J]. Astrophys. J., 2014, 786(2):132-140
    [109]
    EHRENREICH D, DESERT J M. Mass-loss rates for transiting exoplanets[J]. Astron. Astrophys., 2011, 529(1):251-264
    [110]
    EHRENREICH D, BOURRIER V, WHEATLEY P J, et al. A giant comet-like cloud of hydrogen escaping the warm Neptune-mass exoplanet GJ 436b[J]. Nature, 2015, 522(7557):459-461
    [111]
    TIAN F, TOON O B, PAVLOV A A, et al. Transonic hydrodynamic escape of hydrogen from extrasolar planetary atmospheres[J]. Astrophys. J., 2005, 621(2):1049-1060
    [112]
    YELLE R V. Aeronomy of extra-solar giant planets at small orbital distances[J]. Icarus, 2004, 170(1):167-179
    [113]
    VIDALMADJAR A, DESERT J M, ETANGS A L D, et al. Detection of oxygen and carbon in the hydrodynamically escaping atmosphere of the extrasolar planet HD 209458b[J]. Astrophys. J., 2004, 604(1):L69-L72
    [114]
    LINSKY J L, YANG H, et al. Observations of mass loss from the transiting exoplanet HD 209458b[J]. Astrophys. J., 2010, 717(2):1291-1299
    [115]
    HOLMSTROM M, EKENBACK A, SELSIS F, et al. Energetic neutral atoms as the explanation for the high-velocity hydrogen around HD 209458b[J]. Nature, 2008, 451(7181):970-972
    [116]
    KISLYAKOVA K G, HOLMSTROM M, LAMMER H, et al. Magnetic moment and plasma environment of HD 209458b as determined from Ly alpha observations[J]. Science, 2014, 346(6212):981-984
    [117]
    JENKINS J M, TWICKEN, JOSEPH D, et al. Discovery and validation of Kepler-452b:a 1.6 Re super Earth exoplanet in the habitable zone of a G2 star[J]. Astrono. J., 2015, 150(2):56
    [118]
    LAMMER H, LICHTENEGGER H I, KULIKOV Y N, et al. Coronal Mass Ejection (CME) activity of low mass M stars as an important factor for the habitability of terrestrial exoplanets. Ⅱ. CME-induced ion pick up of Earth-like exoplanets in close-in habitable zones[J]. Astrobiology, 2007, 7(1):185-207
    [119]
    RAMIREZ R M, KALTENEGGER L. The habitable zones of pre-main-sequence stars[J]. Astrophys. J. Lett., 2012, 798(1):L25
    [120]
    LUGER R, BARNES R. Extreme water loss and abiotic O2buildup on planets throughout the habitable zones of M dwarfs[J]. Astrobiology, 2015, 15(2):119-143
    [121]
    BERTATHOMPSON Z K, IRWIN J,CHARBONNEAU D, et al. A rocky planet transiting a nearby low-mass star[J]. Nature, 2015, 527(7577):204-207
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(836) PDF Downloads(1359) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return