Volume 33 Issue 2
Mar.  2013
Turn off MathJax
Article Contents
Gan Hong, Wang Shijie, Li Xiongyao. Electrostatic transportation of lunar dust: a review[J]. Chinese Journal of Space Science, 2013, 33(2): 135-142. doi: 10.11728/cjss2013.02.135
Citation: Gan Hong, Wang Shijie, Li Xiongyao. Electrostatic transportation of lunar dust: a review[J]. Chinese Journal of Space Science, 2013, 33(2): 135-142. doi: 10.11728/cjss2013.02.135

Electrostatic transportation of lunar dust: a review

doi: 10.11728/cjss2013.02.135 cstr: 32142.14.cjss2013.02.135
  • Received Date: 2012-01-16
  • Rev Recd Date: 2012-09-17
  • Publish Date: 2013-03-15
  • Electrostatic levitation and transportation of lunar dust had been one of the most interesting and controversial problems since the Apollo era. It is not only significant clues to study the evolution of lunar surface material, but also a key factor which should be considered in lunar mission. On lunar surface, the dust grains are electrostatically charged by electron deposition, photoemission, and secondary electron emission. With the charge processes, an electrostatic field might be formed on lunar near-surface. As a result, dust grains could be lifted. However, the electrostatic levitation and transportation process of lunar dust grains are still not clear. Shortage in comprehension of electrostatic properties of lunar dust grains, simulation of electrostatic levitation and transportation, and landing detection of lunar dust environment might be the main factors which limit the further knowledge of electrostatic levitation and transportation of lunar dust grains. To satisfy the need of lunar science and future lunar missions, development of lunar dust simulant, measurement of electrostatic properties of lunar dust, simulation of electrostatic levitation and transportation, and detection of lunar dust environment are important aspects in the study of lunar dust in the future.

     

  • loading
  • [1]
    Rennilson J J, Criswell D R. Surveyor observations of lunar horizon-glow[J]. Earth Moon Planets, 1974, 10(2):121-142
    [2]
    Severny A B, Terez E I, Zvereva A M. The measurements of sky brightness on Lunokhod-2[J]. Earth Moon Planets, 1975, 14(1):123-128
    [3]
    Zook H A, McCoy J E. Large scale lunar horizon glow and a high altitude lunar dust exosphere[J]. Geophys. Res. Lett., 1991, 18(11):2117-2120
    [4]
    Zook H A, Potter A E. The lunar dust exosphere and Clementine lunar horizon glow[C]//26th Lunar and Planetary Science Conference, 1995, 26:1577-1578
    [5]
    Gold T, Williams G J. Electrostatic transportation of dust on the moon[C]//Photon and Particle Interactions with Surfaces in Space, the 6th ESLAB Symposium. Noordwijk, 1973, 37:557-560
    [6]
    Sickafoose A A, Colwell J E, Horányi M, et al. Experimental levitation of dust grains in a plasma sheath[J]. J. Geophys. Res., 2002, 107(A11):1408
    [7]
    Liu Y, Taylor L A. Characterization of lunar dust and a synopsis of available lunar simulants[J]. Planet. Space Sci., 2011, 59(14):1769-1783
    [8]
    Horányi M, Walch B, Robertson S, et al. Electrostatic charging properties of Apollo 17 lunar dust[J]. J. Geophys. Res., 1998, 103(E4):8575-8580
    [9]
    Heiken G H, Vaniman D T. Lunar Sourcebook-A User's Guide to the Moon[M]. New York: Cambridge University Press, 1991
    [10]
    Gaier J R. The Effects of Lunar Dust on EVA Systems During the Apollo Missions[R]. NASA/TM-2005-213610, 2005
    [11]
    Wagner S A. The Apollo Experience Lessons Learned for Constellation Lunar Dust Management[R]. NASA/TP-2006-213726, 2006
    [12]
    Gaier J R, Jaworske D A. Lunar Dust on Heat Rejection System Surfaces: Problems and Prospects[R]. NASA/TM-2007-214814, 2007
    [13]
    Low G M. Apollo 11 Mission Report[R]. NASA-TM-X-62633, MSC-00171, 1969
    [14]
    McDivitt J A. Apollo 12 Mission Report[R]. NASA-TM-X-74200, MSC-01855, 1970
    [15]
    Buhler C R, Calle C I, Mantovani J G, et al. Test Method for In Situ Electrostatic Characterization of Lunar Dust[C]//IEEE Aerospace Conference, 2007. 1-19
    [16]
    Cheetham B W. Modeling lunar dust transport and surface interaction[R]. NASA Contractor Report 4404, 2008
    [17]
    Gr\"un E, Horányi M, Sternovsky Z. The lunar dust environment[J]. Planet. Space Sci., 2011, 59(14):1672-1680
    [18]
    Calle C I. Measuring electrostatic phenomena on Mars and the Moon[C]//The Institute of Electrostatics Japan Annual Meeting. Tokyo: Institute of Electrostatics Japan, 2001. 169-279
    [19]
    McCoy J E, Criswell D R. Evident for a high altitude distribution of lunar dust[C]//5th Lunar Science Conference. Houston, Texas: Geochemica and Cosmochimica Acta, 1974, 3:2991-3005
    [20]
    Garrick-Bethell I, Head J W, Pieters C M. Spectral properties, magnetic fields, and dust transport at lunar swirls[J]. Icarus, 2011, 212(2):480-492
    [21]
    Richard D T, Glenar D A, Stubbs T J, et al. Light scattering by complex particles in the Moon's exosphere: Toward a taxonomy of models for the realistic simulation of the scattering behavior of lunar dust[J]. Planet. Space Sci., 2011, 59(14):1804-1814
    [22]
    Stubbs T J, Vondrak R R, Farrell W M. A dynamic fountain model for lunar dust[J]. Adv. Space Res., 2006, 37(1):59-66
    [23]
    Johnson S W, Taylor G J. Environmental effects on lunar astronomical observatories[C]//2nd Conference on Lunar Bases and Space Activities of the 21st Century, 1992: 329-335
    [24]
    Gold T. The lunar surface[J]. Mon. Not. Royal Astron. Soc., 1955, 115:585-604
    [25]
    Atkinson Nancy. Lunar dust transport still a mystery[EB/OL]. 2010, http://www.physorg.com/news/2010-12-lunar-mystery.html
    [26]
    Abbas M M, Tankosic D, Craven P D, et al. Lunar dust charging by photoelectric emissions[J]. Planet. Space Sci., 2007, 55(7/8):953-965
    [27]
    Zoltaán S, Horányi M, Robertson S. Charging of dust particles on surfaces[J]. J. Vac. Sci. Tech., 2001, 19(5):2533
    [28]
    Feuerbacher B, Anderegg M, Fitton B, et al. Photoemission from lunar surface fines and the lunar photoelectron sheath[C]//3rd Lunar Science Conference: Supplement 3, Geochimica et Cosmochimica Acta, 1972, 3. 2655-2663
    [29]
    Abbas M M, Tankosic D, Craven P D, et al. Lunar dust grain charging by electron impact: complex role of secondary electron emissions in space environments[J]. Astrophys. J., 2010, 718(2):795-809
    [30]
    N\check{e}me\check{c}ek Z, Pavl u J, Afrkov J, et al. Lunar Dust Grain Charging by Electron Impact: Dependence of the Surface Potential on the Grain Size[J]. Astrophys. J., 2011, 738(1):14
    [31]
    Halekas J S, Delory G T, Lin R P, et al. Lunar Prospector measurements of secondary electron emission from lunar regolith[J]. Planet. Space Sci., 2009, 57(1):78-82
    [32]
    Abbas M M, Tankosic D, Craven P D,et al. Photoelectric emission measurements on Apollo 17 lunar dust grains[C]//37th Lunar and Planetary Science Conference. Texas: Lunar and Planetary Institute (LPI), 2006, 1415
    [33]
    Ignatov A M. Photoelectric charging of dust grains[J]. Plasma Phys. Rep., 2009, 35(8):647-650
    [34]
    Forward K M, Daniel J L, Sankaran R M. Triboelectric charging of lunar regolith simulant[J]. J. Geophys. Res., 2009, 114, A10109
    [35]
    Sickafoose A A, Colwell J E, Robertson H S. Experimental investigations on photoelectric and triboelectric charging of dust[J]. J. Geophys. Res., 2001, 16(A5):8343-8356
    [36]
    Nakagawa M, Agui J H. The Moon as a beach of fine powders[R]//The Lunar Regolith Simulant Materials Workshop. Madison: Marshall Space Flight Center, 2005, 19-20
    [37]
    Stubbs T J, Vondrak R R, Farrell W M. Impact of dust on lunar exploration[C]//Dust in Planetary Systems. Kauai, Hawaii: ESA, 2007. 239-243
    [38]
    Sickafoose A A, Colwell J E, Horányi M, Robertson S. Photoelectric charging of dust particles in vacuum[J]. Phys. Rev. Lett., 2000, 84(26):6034-6037
    [39]
    Stubbs T J, Halekas J S, Farrell W M, et al. Lunar surface charging: A global perspective using lunar prospector data[C]//Dust in Planetary Systems. Kauai, Hawaii: ESA, 2005. 181-184
    [40]
    Delory G T. Electrical phenomena on the Moon and Mars[C]//ESA Annual Meeting on Electrostatics, 2010, A1. 1-18
    [41]
    Sternovsky Z, Chamberlin P, Horanyi M, et al. Variability of the lunar photoelectron sheath and dust mobility due to solar activity[J]. J. Geophys. Res., 2008, 113, A10
    [42]
    Mall U, Borisov N. Electric potential distribution on the nightside of the Moon[C]//32nd Lunar and Planetary Science Conference, 2001. 1538
    [43]
    Dove A, Robertson S, Wang X, et al. Characterization of a Laboratory simulated lunar photoelectron sheath[C]//42nd Lunar and Planetary Science Conference, 2011
    [44]
    Halekas J S, Mitchell D L, et al. Evidence for negative charging of the lunar surface in shadow[J]. Geophysical Research Letters, 2002, 29(10):1435-1439
    [45]
    Halekas J S, Delory G T, Lin R P, et al. Lunar prospector observations of the electrostatic potential of the lunar surface and its response to incident currents[J]. J. Geophys. Res., 2008, 113, A9
    [46]
    Colwell J E, Robertson S R, Horányi M, et al. Lunar dust levitation[J]. J. Aerosp. Eng., 2009, 22(1):2-9
    [47]
    Halekas J S, Delory G T, Lin R P, et al. Lunar surface charging during solar energetic particle events: Measurement and prediction[J]. J. Geophys. Res., 2009, 114, A5
    [48]
    Halekas J S, Delory G T, Brain D A, et al. Extreme lunar surface charging during solar energetic particle events[J]. Geophys. Res. Lett., 2007, 34: 1-5
    [49]
    Wang X, Horányi M, Sternovsky Z, et al. A laboratory model of the lunar surface potential near boundaries between sunlit and shadowed regions[J]. Geophys. Res. Lett., 2007, 34(16):1-5
    [50]
    Borisov N, Mall U. Charging and motion of dust grains near the terminator of the moon[J]. Planet. Space Sci., 2006, 54(6):572-580
    [51]
    Yamamoto S, Nakamura A M. A new model of continuous dust production from the lunar surface[J]. Astron. Astrophys., 2000, 356:1112-1118
    [52]
    Wang J, He X, Cao Y, et al. Modeling electrostatic levitation of dust particles on lunar surface[J]. IEEE Trans. Plas. Sci., 2008, 36(5):2459-2466
    [53]
    Messmer P, Horányi M, Sternovsky Z, et al. Kinetic simulations of the lunar plasma environment with the VORPAL framework[C]//NLSI Lunar Science Conference. NASA Ames Research Center, Moffett Field, California: LPI Contribution, 2008. 1415
    [54]
    Criswell D R. Horizon-glow and the motion of lunar dust[C]//Photon and Particle Interactions With Surfaces in Space, the 6th ESLAB Symposium. Noordwijk: D. Reidel Publ. Comp., 1973. 545-556
    [55]
    Sickafoose A A, Colwell J E, Horányi M, et al. Experimental levitation of dust grains in a plasma sheath[J]. J. Geophys. Res., 2002, 107(A11), 1408
    [56]
    Horányi M, Walch B, Robertson S. Electrostatic charging of lunar dust[C]//29th Lunar and Planetary Science Conference, 1998. 1527
    [57]
    Calle C I. Electrostatic Characterization of Lunar Dust[R]. KSC Technology Development and Application 2006--2007, 2006
    [58]
    Berg O E, Wolf H, Rhee J, et al. Lunar soil movement registered by the Apollo 17 cosmic dust experiment[C]//31st Interplanetary Dust and Zodiacal Light. Springer-Verlag, Berlin, 1976. 233-237
    [59]
    Afshar-Mohajer N, Brian D, Wu C Y, et al. Electrostatic particle collection in vacuum[J]. Adv. Space Res., 2011, 48(5):933-942
    [60]
    Singer S F, Walker E H. Electrostatic dust transport on the lunar surface[J]. Icarus, 1962, 1(1-6):112-120
    [61]
    Wang X, Colwell J, Horanyi M, et al. Charge of dust on surfaces in plasma[J]. IEEE Trans. Plas. Sci., 2007, 35(2):271-279
    [62]
    Wang X, Horányi M, Robertson S. Experiments on dust transport in plasma to investigate the origin of the lunar horizon glow[J]. J. Geophys. Res., 2009, 114, A05130
    [63]
    Wang X, Horányi M, Robertson S. Investigation of dust transport on the lunar surface in a laboratory plasma with an electron beam[J]. J. Geophys. Res., 2010, 115:1-6
    [64]
    Sternovsky Z, Horányi M, Gruen E, et al. Investigation of near-surface Lunar Dust Transport in the Laboratory[C]//38th COSPAR Scientific Assembly. Bremen: COSPAR, 2010
    [65]
    Wang X, Robertson S, Horányi M, et al. Dust charging and transport on surfaces[J]. Am. Inst. Phys., 2011, 1379:142-145
    [66]
    Wang X, Horányi M, Robertson S, et al. Dust transport on a surface in plasma[J]. IEEE Trans. Plas. Sci., 2011, 39(11):2730-2731
    [67]
    Cooper B L, McKay D S, Riofrio L M, et al. Lunar dust separation for toxicology studies[C]//41st Lunar and Planetary Science Conference. Woodlands, Texas, 2010. 2297
    [68]
    Christoffersen R, Lindsay J F, Noble S K, et al. Lunar Dust Effects on Spacesuit Systems[R]. NASA/TP-2009-214786, 2009
    [69]
    Calle C I, Mazumder M K, Immer C D, et al. Controlled particle removal from surfaces by electrodynamic methods for terrestrial, lunar, and Martian environmental conditions[J]. J. Phys., 2008, 142(1):012073
    [70]
    Sickafoose A A, Colwell J E, Hornyi M, et al. Experimental investigations on photoelectric and triboelectric charging of dust[J]. J. Geophys. Res., 2001, 106(A5):8343-8356
    [71]
    Anderegg M, Feuerbacher B, Fitton B, et al. Secondary electron emission characteristics of lunar surface fines[J]. Geochim. Cosmochim. Acta, 1972, 3:2665-2669
    [72]
    Willis R F, Anderegg M, Feuerbacher B, et al. Photoemission and Secondary Electron Emission from Lunar Surface Material[C]//Photon and Particle Interactions with Surfaces in Space, the 6th ESLAB Symposium. Noordwijk: Astrophysics and Space Science Library, 1973. 37:389
    [73]
    O'Brien B J. Lunar dust and dust transport: ''Basics'' from Apollo dust detector experiments[C]//Lunar Dust, Plasma and Atmosphere: The Next Steps, 2010
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(3186) PDF Downloads(1377) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return