Volume 33 Issue 4
Jul.  2013
Turn off MathJax
Article Contents
LI Na, ZHANG Heqiao, SHANG Guijun, NIE Rongxin, MA Jianhua, CANG Huaixing. Study on Loading Techniques of Protein Species into Space Crystallization Chamber[J]. Chinese Journal of Space Science, 2013, 33(4): 441-447. doi: 10.11728/cjss2013.04.441
Citation: LI Na, ZHANG Heqiao, SHANG Guijun, NIE Rongxin, MA Jianhua, CANG Huaixing. Study on Loading Techniques of Protein Species into Space Crystallization Chamber[J]. Chinese Journal of Space Science, 2013, 33(4): 441-447. doi: 10.11728/cjss2013.04.441

Study on Loading Techniques of Protein Species into Space Crystallization Chamber

doi: 10.11728/cjss2013.04.441 cstr: 32142.14.cjss2013.04.441
  • Received Date: 2012-07-12
  • Rev Recd Date: 2013-03-25
  • Publish Date: 2013-07-15
  • The prerequisite of using X-ray diffracting technique to study the relation between protein molecular structure and its function is to obtain the protein crystals of high quality. The microgravity environment of space is an ideal place for culturing such protein crystals. The experimental yield of the space protein crystallization is affected heavily by the loading techniques of the protein species into the crystallization chamber. The loading technique of protein species into the new-designed crystallization chamber for protein crystallization experiment aboard Shenzhou-8 spaceship is studied systematically. It is deduced that the needle shape of the pipette, the protein loading tool, the holding manner of the glass capillary tube, the qualities of sealing and siliconization of the tube have remarkable influences on the experimental results of protein crystallization, which were proved to result in the inclusion of gas bubbles. The corresponding measures such as improving sealing technique and protein loading pipette, constructing a tube-holding tool, are adopted to optimize loading technique and eliminate the gas bubbles. The new techniques have been implemented successfully to the final space experiment of protein crystallization aboard Shenzhou-8 spaceship.

     

  • loading
  • [1]
    Littke W, John C. Protein single crystal growth under microgravity[J]. Science, 1984, 225: 203-204
    [2]
    DeLucas L J, Long M M, Moore K M, et al. Recent results and new hardware developments for protein crystal growth in microgravity[J]. J. Cryst. Growth, 1994, 135(1/2): 183-195
    [3]
    Bi Ruchang. Space crystal growth of proteins with domestic facility[J]. Chin. J. Space Sci., 1996, 16(3): 208-214. In Chinese (毕汝昌. 用国产装置进行的空间蛋 白质结晶实验[J]. 空间科学学报, 1996, 16(3): 208-214)
    [4]
    Lorber B. The crystallization of biological macromolecules under microgravity: a way to more accurate three-dimensional structures[J]. Biochim. Biophys. Acta, 2002, 1599: 1-8
    [5]
    Cang H X, Wang Y P, Han Y, Zhou J X, Bi R C. The space experiment of protein crystallization aboard the Chinese spacecraft SZ-3[J]. Microgr. Sci. Tech., 2003, 14: 13-16
    [6]
    Smirnova E A, Kislitsyn Y A, Sosfenov N I, et al. Protein crystal growth on the Russian segment of the International Space Station[J]. Crystallogr. Reports, 2009, 54(5): 901-911
    [7]
    Harm D L, Ruttley T M, Gish A. Research in Space: Facilities on the International Space Station[R], NASA, NP-2009-08-604-HQ, 2009
    [8]
    McPherson A, Malkin A J, Kuznetsov Y G, et al. The effects of microgravity on protein crystallization: evidence for concentration gradients around growing crystals[J]. J. Cryst. Growth, 1999, 196(2/3/4): 572-586
    [9]
    Lin H, Rosenberger F, Alexander J I D, et al. Convective-diffusive transport in protein crystal growth[J]. J. Cryst. Growth, 1995, 151(1/2): 153-162
    [10]
    Savino R, Monti R. Buoyancy and surface-tension-driven convection in hanging-drop protein crystallizer[J]. J. Cryst. Growth, 1996, 165(3): 308-318
    [11]
    McPherson A. Protein crystallization in the structural genomics era[J]. J. Struct. Funct. Genom., 2004, 5: 3-12
    [12]
    Blundell T L, Jhoti H, Abell C. High-throughput crystallography for lead discovery in drug design[J]. Nat. Rev. Drug Disc., 2002, 1: 45-54
    [13]
    Drenth J. Principles of Protein X-Ray Crystallography (3rd Edition). New York: Springer Science+Business Media, LLC, 2007
    [14]
    Bosch R, Lautenschlager P, Potthast L, et al. Experimental equipment for protein crystallization in μg facilities[J]. J. Cryst. Growth, 1992, 122: 310-316
    [15]
    Hilgenfeld R, Liesum A, Storm R, et al. Crystallization of two bacterial enzymes on an unmanned space station[J]. J. Cryst. Growth, 1992, 122: 330-336
    [16]
    Strong R K, Stoddard B L, Arrott A, et al. Long duration growth of protein crystals in microgravity aboard the MIR space station[J]. J. Cryst. Growth, 1992, 119: 200-214
    [17]
    Vergara A, Lorber B, Sauter C, et al. Lessons from crystals grown in the Advanced Protein Crystallisation Facility for conventional crystallisation applied to structural biology[J]. Biophys. Chem., 2005, 118: 102-112
    [18]
    Pletser V, Bosch R, Potthast L, et al. The Protein Crystallisation Diagnostics Facility (PCDF) on board ESA Columbus laboratory[J]. Microgr. Sci. Tech., 2009, 21: 269-277
    [19]
    Carter D C, Wright B, Miller T, et al. PCAM: a multi-user facility-based protein crystallization apparatus for microgravity[J]. J. Cryst. Growth, 1999, 196(2/3/4): 610-622
    [20]
    Carter D C, Wright B, Miller T, et al. Diffusion-controlled crystallization apparatus for microgravity (DCAM): flight and ground-based applications[J]. J. Cryst. Growth, 1999, 196(2/3/4): 602-609
    [21]
    Garcia-Ruiz J M, Gonzalez-Ramirez L A, Gavira J A, Otalora F. Granada Crystallisation Box: a new device for protein crystallisation by counter-diffusion techniques[J]. Acta Cryst. D Biol. Cryst., 2002, 58: 1638-1642
    [22]
    Tanaka H, Tsurumura T, Aritake K, et al. Improvement in the quality of hematopoietic prostaglandin D synthase crystals in a microgravity environment[J]. J. Synchr. Radiat., 2011, 18: 88-91
    [23]
    Kawajia M, Gamachea O, Hwang D H. Investigation of Marangoni and natural convection during protein crystal growth[J]. J. Cryst. Growth, 2003, 258: 420-430
    [24]
    Cang H X, Bi R C. Numerical studies on the pre-nucleation transport in the liquid/liquid diffusion crystallization of proteins[J]. J. Cryst. Growth, 1998, 194: 133-137
    [25]
    Cang H X, Bi R C. Infuence of gravity on post-nucleation transport in liquid/liquid diffusion chamber of protein crystallization[J]. J. Cryst. Growth, 2001, 232: 473-80
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(2879) PDF Downloads(970) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return