Volume 33 Issue 6
Nov.  2013
Turn off MathJax
Article Contents
Y V Bogdanova, C J Owen, M W Dunlop, M G G T Taylor, A N Fazakerley. Magnetospheric Boundary Layer Structure and Dynamics as Seen From Cluster and Double Star Measurements[J]. Chinese Journal of Space Science, 2013, 33(6): 577-603. doi: 10.11728/cjss2013.06.577
Citation: Y V Bogdanova, C J Owen, M W Dunlop, M G G T Taylor, A N Fazakerley. Magnetospheric Boundary Layer Structure and Dynamics as Seen From Cluster and Double Star Measurements[J]. Chinese Journal of Space Science, 2013, 33(6): 577-603. doi: 10.11728/cjss2013.06.577

Magnetospheric Boundary Layer Structure and Dynamics as Seen From Cluster and Double Star Measurements

doi: 10.11728/cjss2013.06.577
More Information
  • Author Bio:

    Y V Bogdanova,E-mail:yulia.bogdanova@stfc.ac.uk

  • Received Date: 2013-08-12
  • Rev Recd Date: 2013-09-06
  • Publish Date: 2013-11-15
  • In this review, we discuss the structure and dynamics of the magnetospheric Low-Latitude Boundary Layer (LLBL) based on recent results from multi-satellite missions Cluster and Double Star. This boundary layer, adjacent to the magnetopause on the magnetospheric side, usually consists of a mixture of plasma of magnetospheric and magnetosheath origins, and plays an important role in the transfer of mass and energy from the solar wind into the magnetosphere and subsequent magnetospheric dynamics. During southward Interplanetary Magnetic Field (IMF) conditions, this boundary layer is generally considered to be formed as a result of the reconnection process between the IMF and magnetospheric magnetic field lines at the dayside magnetopause, and the structure and plasma properties inside the LLBL can be understood in terms of the time history since the reconnection process. During northward IMF conditions, the LLBL is usually thicker, and has more complex structure and topology. Recent observations confirm that the LLBL observed at the dayside can be formed by single lobe reconnection, dual lobe reconnection, or by sequential dual lobe reconnection, as well as partially by localized cross-field diffusion. The LLBL magnetic topology and plasma signatures inside the different sub-layers formed by these processes are discussed in this review. The role of the Kelvin-Helmholtz instability in the formation of the LLBL at the flank magnetopause is also discussed. Overall, we conclude that the LLBL observed at the flanks can be formed by the combination of processes, (dual) lobe reconnection and plasma mixing due to non-linear Kelvin-Helmholtz waves.

     

  • loading
  • [1]
    Haerendel G, Paschmann G, Sckopke N, et al. The frontside boundary layer of the magnetosphere and the problem of reconnection [J]. J. Geophys. Res., 1978, 83:3195-3216, doi: 10.1029/JA083iA07p03195
    [2]
    Eastman T E, Hones Jr E W. Characteristics of the magnetospheric boundary layer and magnetopause layer as observed by IMP 6 [J]. J. Geophys. Res., 1979, 84:2019-2028, doi: 10.1029/JA084iA05p02019
    [3]
    Paschmann G. Plasma structure of the magnetopause and boundary layer [M]//Magnetopsheric Boundary Layers. ESA-SP, 1979. 148
    [4]
    Eastman T E, Fuselier S A, Gosling J T. Magnetopause crossings without a boundary layer [J]. J. Geophys. Res., 1996, 101:49-58, doi: 10.1029/95JA02757
    [5]
    Newell P T, Onsager T, Edited. Earth's low-latitude boundary layer [J]. Geophys. Monogr. Ser., 2003, 133:384, doi: 10.1029/GM133
    [6]
    Hasegawa H. Structure and Dynamics of the Magnetopause and Its Boundary Layers [J]. Monogr. Environ. Earth Planets, 2012, 1:71-119, doi: 10.5047/meep.2012.00102.0071
    [7]
    Escoubet C P, Fehringer M, Goldstein M. Introduction: the Cluster mission [J]. Ann. Geophys., 2001, 19:1197-1200
    [8]
    Escoubet C P, Taylor M G G T, A. Masson A, et al. Dynamical processes in space: Cluster results [J]. Ann. Geophys., 2013, accepted
    [9]
    Taylor M G G T, Escoubet C P, Laakso H, et al. The science of the Cluster mission [G]//Jim Dungey 90th Anniversary. Springer, 2013
    [10]
    Johnstone A D, Alsop C, Burge S, et al. Peace: a plasma electron and current experiment [J]. Space Sci. Rev., 1997, 79:351-398
    [11]
    Reme H, Aoustin C, Bosqued J M, et al. First multispacecraft ion measurements in and near the Earth's magnetosphere with the identical Cluster Ion Spectrometry (CIS) experiment [J]. Ann. Geophys., 2001, 19:1303-1354
    [12]
    Gustafsson G, Andr M, Carozzi T, et al. First results of electric field and density observations by Cluster EFW based on initial months of operation[J]. Ann. Geophys., 2001, 19:1219-1240
    [13]
    Balogh A, Carr C M, Acu?n M H, et al. The Cluster magnetic field investigation: Overview of in-flight performance and initial results [J]. Ann. Geophys., 2001, 19:1207-1217
    [14]
    Liu Z X, Escoubet C P, Pu Z, et al. The Double Star mission [J]. Ann. Geophys., 2005, 23:2707-2712
    [15]
    Fazakerley A N, Carter P J, Watson G, et al. The Double Star Plasma Electron and Current experiment [J]. Ann. Geophys., 2005, 23:2733-2756
    [16]
    Reme H, Dandouras I, Aoustin C, et al. The HIA instrument on board the Tan Ce 1 Double Star near-equatorial spacecraft and its first results [J]. Ann. Geophys., 2005, 23:2757-2774
    [17]
    Carr C, Brown P, Zhang T L, et al. The Double Star magnetic field investigation: instrument design, performance and highlights of the first year's observations [J]. Ann. Geophys., 2005, 23:2713-2732
    [18]
    Smith C W, L'Heureux J, Ness N F, et al. The ACE magnetic fields experiment [J]. Space Sci. Rev., 1998, 86:613-632, doi: 10.1023/A:1005092216668
    [19]
    McComas D J, Bame S J, Barker P, et al. Solar Wind Electron Proton Alpha Monitor (SWEPAM) for the advanced composition explorer [J]. Space Sci. Rev., 1998, 86:563-612, doi: 10.1023/A:1005040232597
    [20]
    King J H, Papitashvili N E. Solar wind spatial scales in, and comparisons of, hourly wind and ACE plasma and magnetic field data [J]. J. Geophys. Res., 2005, 110:A02104, doi: 10.1029/2004JA010649
    [21]
    Dungey J W. Interplanetary magnetic field and the auroral zones [J]. Phys. Rev. Lett., 1961, 6:47-48
    [22]
    Cowley S W H, Owen C J. A simple illustrative model of open flux tube motion over the dayside magnetopause [J]. Planet. Space Sci., 1989, 37:1461-1475
    [23]
    Biernat H K, Heyn M F, Rijnbeek R P, et al. The structure of reconnection layers: Application to the Earth's magnetopause [J]. J. Geophys. Res., 1989, 94:287-298, doi: 10.1029/JA094iA01p00287
    [24]
    Semenov V S, Lebedeva V V, Biernat H K, et al. Timevarying reconnection: Implications for magnetopause observations[J]. J. Geophys. Res., 1995, 100:21 779-21 789, doi: 10.1029/95JA01182
    [25]
    Lockwood M, Moen J. Ion populations on open field lines within the dayside low-latitude boundary layer: Theory and observations during a transient event [J]. Geophys. Res. Lett., 1996, 23:2895-2898, doi: 10.1029/96GL02761
    [26]
    Biernat H K, Semenov V S, Rijnbeek R P. Timedependent three-dimensional Petschek-type reconnection: A case study for magnetopause conditions [J]. J. Geophys. Res., 1998, 103:4693-4706, doi: 10.1029/97JA02965
    [27]
    de Keyser J, Dunlop M W, Owen C J, et al. Magnetopause and boundary layer [J]. Space Sci. Rev., 2005, 118:231-320
    [28]
    Gosling J T, Thomsen M F, Bame S J, et al. The electron edge of the low latitude boundary layer during accelerated flow events [J]. Geophys. Res. Lett., 1990, 17:1833-1836
    [29]
    Bogdanova Y V, Owen C J, Fazakerley A N, et al. Statistical study of the location and size of the electron edge of the low-latitude boundary layer as observed by Cluster at mid-altitudes [J]. Ann. Geophys., 2006, 24:2645
    [30]
    Topliss S, Johnstone A, Coates A, et al. Charge neutrality and ion conic distributions at the equatorward electron edge of the midaltitude cusp [J]. J. Geophys. Res., 2001, 106:21 095-21 108, doi: 10.1029/2000JA003032
    [31]
    Newell P T, Meng C I. The cusp and the cleft/boundary layer-low-altitude identification and statistical local time variation [J]. J. Geophys. Res., 1988, 93:14 549-14 556, doi: 10.1029/JA093iA12p14549
    [32]
    Newell P T, Meng C I. Mapping the dayside ionosphere to the magnetosphere according to particle precipitation characteristics [J]. Geophys. Res. Lett., 1992, 19:609-612, doi: 10.1029/92GL00404
    [33]
    Lockwood M, Cowley S W H, Onsager T G. Ion acceleration at both the interior and exterior Alfv′en waves associated with the magnetopause reconnection site: Signatures in cusp precipitation [J]. J. Geophys. Res., 1996, 101:21 501-21 514, doi: 10.1029/96JA01948
    [34]
    Fuselier S A, Lockwood M, Onsager T G, et al. The source population for the cusp and cleft/LLBL for southward IMF [J]. Geophys. Res. Lett., 1999, 26:1665-1668, doi: 10.1029/1999GL900354
    [35]
    Wing S, Newell P T, Onsager T G. Modelling the entry of magnetosheath electrons into the daysideionosphere[J]. J. Geophys. Res., 1996, 101:13 155-13 168, doi: 10.1029/96JA00395
    [36]
    Wing S, Newell P T, Meng C I. Cusp modelling and observations at low altitude [J]. Surv. Geophys., 2005, 26:341-367, doi: 10.1007/s10712-005-1886-0
    [37]
    Bogdanova Y V, Fazakerley A N, Owen C J, et al. Correlation between suprathermal electron bursts, broadband extremely low frequency waves, and local ion heating in the midaltitude cleft/low-latitude boundary layer observed by Cluster [J]. J. Geophys. Res., 2004, 109:A12226, doi: 10.1029/2004JA010554
    [38]
    Zhang Q H, Dunlop M W, Lockwood M, et al. Inner plasma structure of the low-latitude reconnection layer [J]. J. Geophys. Res., 2012, 117:A08205, doi: 10.1029/2012JA017622
    [39]
    Dunlop M W, Zhang Q H, Bogdanova Y V, et al. Magnetopause reconnection across wide local time [J]. Ann. Geophys., 2011, 29:1683-1697, doi: 10.5194/angeo-29-1683-2011
    [40]
    Dunlop M W, Zhang Q H, Bogdanova Y V, et al. Extended magnetic reconnection across the dayside magnetopause[J]. Phys. Rev. Lett., 2011, 107:025004, doi: 10.1103/PhysRevLett.107.025004
    [41]
    Zhong J, Pu Z Y, Dunlop M W, et al. Three-dimensional magnetic flux rope structure formed by multiple sequential X-line reconnection at the magnetopause [J]. J. Geophys. Res., 2013, doi: 10.1002/jgra.50281
    [42]
    Song P, Elphic R C, Russell C T, et al. Structure and properties of the subsolar magnetopause for northward IMF: ISSE observations [J]. J. Geophys. Res., 1990, 95:6375-6387, doi: 10.1029/JA095iA05p06375
    [43]
    Song P, Russell C T, Fitzenreiter R J, et al. Structure and properties of the subsolar magnetopause for northward interplanetary magnetic field: Multiple-instrument particle observations [J]. J. Geophys. Res., 1993, 98:11 319-11 337, doi: 10.1029/93JA00606
    [44]
    Le G, Russell C T, Gosling J T, et al. ISEE observations of low-latitude boundary layer for northward interplanetary magnetic field: Implications for cusp reconnection[J]. J. Geophys. Res., 1996, 101:27 239-27 249, doi: 10.1029/96JA02528
    [45]
    Vaisberg O L, Smirnov V N, Avanov L A, et al. Different types of low-latitude boundary layer as observed by Interball Tail probe [J]. J. Geophys. Res., 2001, 106:13 067-13 090, doi: 10.1029/2000JA000154
    [46]
    Bauer T M, Treumann R A, Baumjohann W. Investigation of the outer and inner low-latitude boundary layers[J]. Ann. Geophys., 2001, 19:1065-1088
    [47]
    Shapiro V D, Shevchenko V I, Cargill P J, et al. Modulational instability of lower hybrid waves at the magnetopause[J]. J. Geophys. Res., 1991, 99:23 735-23 470, doi: 10.1029/94JA0207
    [48]
    Treumann R A, LaBelle J, Bauer TM, Diffusion processes: An observational perspective, in Physics of the Magnetopause[J.] Geophys. Monogr. Ser., 1995:331-340
    [49]
    Ogilvie K W, Fitzenreiter G J. The Kelvin-Helmholtz instability at the magnetopause and inner boundary layer surface [J]. J. Geophys. Res., 1989, 94:15 113-15 123, doi: 10.1029/JA094iA11p15113
    [50]
    FujimotoM, Terasawa T. Anomalous ion mixing within an MHD scale Kelvin-Helmholtz vortex: 2. Effects of inhomogeneity[J]. J. Geophys. Res., 1995, 100:12 025-12 033, doi: 10.1029/94JA02219
    [51]
    Hasegawa H, Fujimoto M, Phan T D, et al. Transport of solar wind into Earth's magnetosphere through rolled-up Kelvin-Helmholtz vortices [J]. Nature, 2004, 430:755-758, doi: 10.1038/nature02799
    [52]
    Nykyri K, Otto A, Lavraud B, et al. Cluster observation of reconnection due to the Kelvin-Helmholtz instability at the dawnside magnetosphere: Plasma transport at the magnetospheric boundary due to reconnection in Kelvin-Helmholtz vortices [J]. Ann. Geophys., 2006, 24:2619-2643
    [53]
    Dungey J W. The structure of the ionosphere, or adventures in velocity space [J/OL]//Geophysics: The Earth's Environment [2007-04-02], doi: 10.1111/j.1365-246X.1963.tb02903.x, http://onlinelibrary.wiley.com/doi/10.1111/j.1365-246X.1963.tb02903.x/abstract
    [54]
    Crooker N U. Dayside merging and cusp geometry [J]. J. Geophys. Res., 1979, 84:951-959, doi: 10.1029/JA084i-A03p00951
    [55]
    Cowley S W H. A qualitative study of the reconnection between the Earth's magnetic field and an interplanetary field of arbitrary orientation [J]. Radio Sci., 1973, 8:903-913, doi: 10.1029/RS008i011p00903.
    [56]
    Cowley S W H. Interpretation of observed relationships between solar wind characteristics and effects at ionospheric altitudes [M]//High Latitude Space Plasma Physics. New York: Plenum Publishing Corporation, 1983. 225-249
    [57]
    Frey H U, Mende S B, Immel T J, et al. Proton aurora in the cusp [J]. J. Geophys. Res., 2002, 107:1091, doi: 10.1029/2001JA900161
    [58]
    Bogdanova Y V, Marchaudon A, Owen C J, et al. On the formation of the high-altitude stagnant cusp: Cluster observations [J]. Geophys. Res. Lett., 2005, 32:L12101, doi: 10.1029/2005GL022813
    [59]
    Song P, Russell C T. Model of the formation of the lowlatitude boundary layer for strongly northward interplanetary magnetic field [J]. J. Geophys. Res., 1992, 97:1411-1420, doi: 10.1029/91JA02377
    [60]
    Song P, Russell C T, Gombosi T I. A model of the formation of the low-latitude boundary layer for northward IMF by reconnection: A summary and review, in Earth's Low-Latitude Boundary Layer [J]. Geophys. Monogr. Ser., 2002:121-130, doi: 10.1029/133GM12
    [61]
    Onsager T G, Scudder J D. Low-latitude boundary layer formation by magnetic reconnection, in Earth's Low-Latitude Boundary Layer [J]. Geophys. Monogr. Ser., 2002:111-120
    [62]
    Oieroset M, Raeder J, Phan T D, et al. Global cooling and densification of the plasma sheet during an extended period of purely northward IMF on October 22?24 [J]. Geophys. Res. Lett., 2005, 32:L12S07, doi: 10.1029/2004GL021523
    [63]
    Mitchell D G, Kutchko F, Williams D J, et al. An extended study of the low-latitude boundary layer on the dawn and dusk flanks of the magnetopause[J]. J. Geophys. Res., 1987, 92:7394-7404, doi: 10.1029/JA092iA07p07394
    [64]
    Imber S M, Milan S E, Hubert B. The auroral and ionospheric flow signatures of dual lobe reconnection [J]. Ann. Geophys., 2006, 24:3115-3129
    [65]
    Lavraud B, ThomsenMF, Lefebvre B, et al. Evidence for newly closed magnetosheath field lines at the dayside magnetopause under northward IMF [J]. J. Geophys. Res., 2006, 111:A05211, doi: 10.1029/2005JA011266
    [66]
    Bogdanova Y V, Owen C J, Dunlop M W, et al. Formation of the low-latitude boundary layer and cusp under the northward IMF: Simultaneous observations by Cluster and Double Star [J]. J. Geophys. Res., 2008, 113:A07S07, doi: 10.1029/2007JA012762
    [67]
    Hu R, Bogdanova Y V, Owen C J, et al. Cluster observations of the midaltitude cusp under strong northward interplanetary magnetic field [J]. J. Geophys. Res., 2008, 113:A07S05, doi: 10.1029/2007JA012726
    [68]
    Watanabe M, Sofko G J, Andr D A, et al. Ionospheric signatures of internal reconnection for northward interplanetary magnetic field: Observation of “reciprocal cells” and magnetosheath ion precipitation [J]. J. Geophys. Res., 2006, 111:A6, doi: 10.1029/2005JA011446
    [69]
    Hapgood M A, Bryant D A. Exploring the magnetospheric boundary layer [J]. Planet. Space Sci., 1992, 40:1431-1459, doi: 10.1016/0032-0633(92)90099-A
    [70]
    Hapgood M A, Bryant D A. Re-ordered electron data in the low-latitude boundary layer [J]. Geophys. Res. Lett., 1990, 17:2043-2046, doi: 10.1029/GL017i011p02043
    [71]
    Fuselier S A, Andreson B J, Onsager T G. Particle signatures of magnetic topology at the magnetopause: AMPTE/CCE observations [J]. J. Geophys. Res., 1995, 100:11 805-11 821, doi: 10.1029/94JA02811
    [72]
    Fuselier S A, Anderson B J, Onsager T G. Electron and ion signatures of field line topology at the low-shear magnetopause[J]. J. Geophys. Res., 1997, 102:4847-4863, doi: 10.1029/96JA03635
    [73]
    Onsager T G, Scudder J D, Lockwood M, et al. Reconnection at the high-latitude magnetopause during northward interplanetary magnetic field conditions [J]. J. Geophys. Res., 2001, 106:25 467-25 488, doi:10. 1029/2000JA000444
    [74]
    Lavraud B, Thomsen M F, Taylor M G G T, et al. Characteristics of the magnetosheath electron boundary layer under northward interplanetary magnetic field: Implications for high-latitude reconnection [J]. J. Geophys. Res., 2005, 110:A06209, doi: 10.1029/2004JA010808
    [75]
    Phan T D, Oieroset M, Fujimoto M. Reconnection at the dayside low-latitude magnetopause and its nonrole in lowlatitude boundary layer formation during northward interplanetary magnetic field [J]. Geophys. Res. Lett., 2005, 32:L17101, doi: 10.1029/2005GL023355
    [76]
    Oieroset M, Phan T D, Angelopoulos V, et al. THEMIS multi-spacecraft observations of magnetosheath plasma penetration deep into the dayside low-latitude magnetosphere for northward and strong by IMF[J]. Geophys. Res. Lett., 2008, 35:L17S11, doi: 10.1029/2008GL033661
    [77]
    Hasegawa H, McFadden J P, Constantinescu O D, et al. Boundary layer plasma flows from high-latitude reconnection in the summer hemisphere for northward IMF: THEMIS multi-point observations [J]. Geophys. Res. Lett., 2009, 36:L15107, doi: 10.1029/2009GL039410
    [78]
    Dungey J W. Electrodynamics of the outer atmosphere[C]//Proceedings of the Ionosphere Conference. The Physical Society of London, 1955, 225
    [79]
    Fujimoto M, Terasawa T. Anomalous ion mixing within an MHD scale Kelvin-Helmholtz vortex [J]. J. Geophys. Res., 1994, 99:8601-8613
    [80]
    Kivelson G K, Chen S H. The Magnetopause: Surface waves and Instabilities and their possible dynamical consequences[J]. Geophys. Monogr. Series, 1995, 99:257-268
    [81]
    Fujimoto M, Teresawa T, Mukai T, et al. Plasma entry from the flanks of the near-Earth magnetotail: Geotail observations [J]. J. Geophys. Res., 1998, 103:2297-2308, doi: 10.1029/97JA02946
    [82]
    Otto A, Fairfield D H. Kelvin-Helmholtz instability at the magnetotail boundary: MHD simulation and comparison with GEOTAIL observations [J]. J. Geophys. Res., 2000, 105:21 175-21 190
    [83]
    Fairfield D H, Otto A, Mukai T, et al. GEOTAIL observations of the Kelvin-Helmholtz instability at the equatorial magnetotail boundary for parallel northward fields [J]. J. Geophys. Res., 2000, 105:21 159-21 174
    [84]
    Nykyri K, Otto A. Plasma transport at the magnetospheric boundary due to reconnection in Kelvin-Helmholtz vortices [J]. Geophys. Res. Lett., 2001, 28:3565-3568
    [85]
    Miura A. Anomalous transport by magnetohydrodynamic Kelvin-Helmholtz instabilities in the solar windmagnetosphere interaction [J]. J. Geophys. Res., 1984, 89:801-818
    [86]
    Chandrasekhar S. Hydrodynamic and Hydromagnetic Stability [M]. Oxford: Clarendon, 1961
    [87]
    Owen C J, Taylor M G G T, Krauklis I C, et al. Cluster observations of surface waves on the dawn flank magnetopause[J]. Ann. Geophys., 2004, 22:971-983, doi:10. 5194/angeo-22-971-2004
    [88]
    Taylor M G G T, Lavraud B, Escoubet C P, et al. The plasma sheet and boundary layers under northward IMF: A multi-point and multi-instrument perspective [J]. Adv. Space Res., 2008, 41:1619-1629, doi: 10.1016/j.asr.2007.10.013
    [89]
    Thomas V A,Winske D. Kinetic simulations of the Kelvin-Helmholtz instability at the magnetopause [J]. J. Geophys. Res., 1993, 98:11 425-11 438
    [90]
    Matsumoto Y, Hoshino M. Onset of turbulence induced by a Kelvin-Helmholtz vortex [J]. Geophys. Res. Lett., 2004, 31:L02807
    [91]
    Hasegawa H, Fujimoto M, Takagi K, et al. Single Spacecraft detection of rolled-up Kelvin Helmholtz vortices at the flank magnetopause [J]. J. Geophys. Res., 2006, 111:A09203, doi: 10.1029/2006JA011728
    [92]
    Taylor M G G T, Hasegawa H, Lavraud B, et al. Spatial distribution of rolled up Kelvin-Helmholtz vortices at Earth's dayside and flank magnetopause [J]. Ann. Geophys., 2012, 30:1025-1035, doi: 10.5194/angeo-30-1025-2012
    [93]
    Nakamura T K M, Fujimoto M. Magnetic reconnection within rolled-up MHD-scale Kelvin-Helmholtz vortices: Two fluid simulations including finite electron inertial effects [J]. Geophys. Res. Lett., 2005, 32:L21102, doi: 10.1029/2005GL023362
    [94]
    Nakamura T K M, Hayashi D, Fujimoto M, et al. Decay of MHD-scale Kelvin-Helmholtz vortices mediated by parasitic electron dynamics [J]. Phys. Rev. Lett., 2004, 92:145001, doi: 10.1103/PhysRevLett.92.145001
    [95]
    Chaston C C, Wilber M, Mozer F S, et al. Mode conversion and anomalous transport in Kelvin-Helmholtz vortices and kinetic Alfv′en waves at the Earth's magnetopause[J]. Phys. Rev. Lett., 2007, 99:175004, doi: 10.1103/PhysRevLett.99.175004
    [96]
    Bavassano-Cattaneo M B, Marcucci M F, Bogdanova Y V, et al., Global reconnection topology as inferred from plasma observations inside Kelvin-Helmholtz vortices [J]. Ann. Geophys., 2010, 28:893-906
    [97]
    Taylor M G G T, Lavraud B. Observation of three distinct ion populations at the Kelvin-Helmholtz-unstable magnetopause [J]. Ann. Geophys., 2008, 26:1559-1566, doi: 10.5194/angeo-26-1559-2008
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(1161) PDF Downloads(2018) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return