Volume 34 Issue 1
Jan.  2014
Turn off MathJax
Article Contents
Niu Jun, Fang Hanxian, Weng Libin. Correlations between solar activity and thermospheric density[J]. Journal of Space Science, 2014, 34(1): 73-80. doi: 10.11728/cjss2014.01.073
Citation: Niu Jun, Fang Hanxian, Weng Libin. Correlations between solar activity and thermospheric density[J]. Journal of Space Science, 2014, 34(1): 73-80. doi: 10.11728/cjss2014.01.073

Correlations between solar activity and thermospheric density

doi: 10.11728/cjss2014.01.073
  • Received Date: 2013-01-21
  • Rev Recd Date: 2014-04-13
  • Publish Date: 2014-01-15
  • The periodic characteristics of solar F10.7 index and the thermospheric density at 250km, 400km and 550km altitude have been investigated. The results show that the thermospheric density correlates well with the solar activities, and both of them have significant period of 27 days and 11 years. Besides, the thermospheric density also has 7~11 days' period, semiannual and annual variations. The response of thermospheric density lags the solar activity for three days. No matter what the level of geomagnetic activity is, the correlation between solar activity and thermospheric density at 400km is larger than 250km, minimum at 550km. The relationships between the neutral density and solar activity show linear, saturation and amplification features. The thermospheric density in higher altitude is more sensitive to the solar activities.

     

  • loading
  • [1]
    Weng Libin, Fang Hanxian, Ji Chunhua, et al. Comparison between the CHAMP/STAR derived thermospheric density and the NRLMSISE-00 model[J]. Chin. J. Space Sci., 2012, 32(5):713-719. In Chinese (翁利斌, 方涵先, 季春华, 等. CHAMP/STAR数据反演热层大气密度以及与NRLMSISE-00模式比较研究[J]. 空间科学学报, 2012, 32(5): 713-719)
    [2]
    Picone J M, Hedin A E, Drob D P, Aikin A C. NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues[J]. J. Geophys. Res., 2002, 107:(A12): 1468, doi: 10.1029/2002JA009430
    [3]
    Jacchia L G. Two atmosphere effects in the orbital acceleration of artificial satellites[J]. Nature, 1959, 183:526-527
    [4]
    Roemer M, Framke W, Schuchardt K G H. Solar EUV and decimetric indices and thermospheric models[J]. Adv. Space Res., 1983, 3:75-83
    [5]
    Rhoden E A, Forbes J M, Marcos F A. The influence of geomagnetic and solar variabilities on lower thermosphere density[J]. J. Atmos. Solar Terr. Phys., 2000, 62:999-1013
    [6]
    Eastes R, Bailey S, Marcos F, et al. The correspondence between thermospheric neutral densities and broadband measurements of the total solar soft X-ray flux[J]. Geophys. Res. Lett., 2004, 31, L19804, doi:10. 1029/2004GL020801
    [7]
    Guo J, Wan W, Forbes J M, et al. Effects of solar variability on thermosphere density from CHAMP accelerometer data[J]. J. Geophys. Res., 2007, 112, A10308, doi:10. 1029/2007JA012409
    [8]
    Lei J, Thayer J P, Forbes J M, et al. Rotating solar coronal holes and periodic modulation of the upper atmosphere[J]. Geophys. Res. Lett., 2008, 35, L10109
    [9]
    Lei J, Thayer J P, Forbes J M, et al. Global thermospheric density variations caused by high-speed solar wind streams during the declining phase of solar cycle 23[J]. J. Geophys. Res., 2008, 113, A11303, doi: 10.1029/2008JA013433
    [10]
    Emmert J T. A long-term data set of globally averaged thermospheric total mass density[J]. J. Geophys. Res., 2009, 114, doi: 10.1029/2009JA014102
    [11]
    Liu L B, Wan W X, Chen Y D, et al. Solar activity effects of the ionosphere: A brief review[J]. Chin. Sci. Bull., 2011, 56, doi: 10.1007/s11434-010-4226-9
    [12]
    Torrence C, Compo G P. A practical guide to wavelet analysis[J]. Bull. Am. Meteor. Soc., 1998, 79(1):61-78
    [13]
    Weng Libin, Fang Hanxian, Zhang Yang, et al. Correlation research between the sunspot numbers and the cosmic rays based on wavelet and cross wavelet analysis[J]. Chin.Space Sci., 2013, 33(1):13-19. In Chinese (翁利斌, 方涵先, 张阳, 等. 利用小波技术研究宇宙线和太阳黑子的相互关系[J]. 空间科学学报, 2013, 33(1):13-19)
    [14]
    Chaman L. Sun-Earth geometry, geomagnetic activity and planetary F2 layer ion density, Part I: Signatures of magnetic reconnection[J]. J. Atmos. Solar Terr. Phys., 2000, 62(1):3-16
    [15]
    Thayer J P, Lei J H, Forbes J M, et al. Thermospheric density oscillations due to periodic solar wind high-speed streams[J]. J. Geophys. Res., 2008, 113, A06307, doi: 10.1029/2008JA013190
    [16]
    Bruinsma S, Forbes J M, Nerem R S, Zhang X. Thermosphere density response to the 20—21 November 2003 solar and geomagnetic storm from CHAMP and GRACE accelerometer data[J]. J. Geophys. Res., 2006, 111, A06303, doi: 10.1029/2005JA011284
    [17]
    Liu H, Lühr H. Strong disturbance of the upper thermospheric density due to magnetic storms: CHAMP observations[J]. J. Geophys. Res., 2005, 110, A09S29, doi:10. 1029/2004JA010908
    [18]
    Huang Jing, Zhou Limin, Xiao Ziniu, et al. Effect of solar wind speed on the middle and high atmosphere circulation of meteorological to climatological scale[J]. Chin. J. Space Sci., 2013, 33(6):637-644. In Chinese (黄静, 周立旻, 肖子牛, 等. 天气尺度到气候尺度太阳风变速对中高纬大气环流的影响[J]. 空间科学学报, 2013, 33(6):637-644
    [19]
    Sutton E K, Forbes J M, Nerem R S. Global thermospheric neutral density and wind response to the severe 2003 geomagnetic storms from CHAMP accelerometer data[J]. J. Geophys. Res., 2005, 110, A09S40, doi: 10.1029/2004JA010985
    [20]
    Hanxian Fang, Libin Weng, Shengzheng. Variations in the thermosphere and ionosphere response to the 17—20 april 2002 geomagnetic storms[J]. Adv. Space Res., 2012, doi: 10.1016/j.asr.2012.02.024
    [21]
    Chakraborty S K, Hajra R. Solar control of ambient ionization of the ionosphere near the crest of the equatorial anomaly in the Indian zone[J]. Ann. Geophys., 2008, 26:47-57
    [22]
    Kane R P. Fluctuations in the ~27-day sequences in the solar index F10.7 during solar cycles 22—23[J]. J. Atmos. Solar Terr. Phys., 2003, 65:1169-1174
    [23]
    Balan N, Bailey G J, Su Y Z. Variations of the ionosphere and related solar fluxes during solar cycles 21 and 22[J]. Adv. Space Res., 1996, 18:11-14
    [24]
    Chen Y I, Liu J Y, Chen S C. Statistical investigation of the saturation effect of sunspot on the ionospheric f0F2[J]. Phys. Chem. Earth: C, 2000, 25:359-362
    [25]
    Liu J Y, Chen Y I, Lin J S. Statistical investigation of the saturation effect in the ionospheric f0F2 versus sunspot, solar radio noise, and solar EUV radiation[J]. J. Geophys. Res., 2003, 108:1067
    [26]
    Weng Libin, Fang Hanxian, Zhang Yang, et al. Ionospheric TEC, NmF2 and slab thickness over Athens region[J]. Chin. J. Geophys., 2012, 11:3558-3567. In Chinese (翁利斌, 方涵先, 张阳, 等. Athens地区电离层TEC, NmF2 以及板厚研究[J]. 地球物理学报, 2012, 11:3558-3567)
    [27]
    Fang H X, Weng L B, Yang S G, et al. Long-term trends in f0F2 over Moscow ionosonde station: Its estimate and origins[J]. Chin. Sci. Bull., 2012, 57:1-7
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(1044) PDF Downloads(1853) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return