Volume 34 Issue 2
Mar.  2014
Turn off MathJax
Article Contents
Zhang Weina, Wu Mingyu, Lu Quanming, Shan Lican, Hao Yufei, Gao Xinliang, Wang Shui. Observations of energetic particles in the upstream of a quasi-parallel collisionless shock[J]. Journal of Space Science, 2014, 34(2): 137-142. doi: 10.11728/cjss2014.02.137
Citation: Zhang Weina, Wu Mingyu, Lu Quanming, Shan Lican, Hao Yufei, Gao Xinliang, Wang Shui. Observations of energetic particles in the upstream of a quasi-parallel collisionless shock[J]. Journal of Space Science, 2014, 34(2): 137-142. doi: 10.11728/cjss2014.02.137

Observations of energetic particles in the upstream of a quasi-parallel collisionless shock

doi: 10.11728/cjss2014.02.137
  • Received Date: 2013-04-01
  • Rev Recd Date: 2013-08-13
  • Publish Date: 2014-03-15
  • With the Cluster observations of a quasi-parallel shock on 16 March 2005, relationship between the upstream low-frequency waves and the energetic ions (about several keV) has been studied. The observation results show that there are full of waves in the upstream of the shock which can interact with the upstream plasma. The differential energy flux of energetic ions in the upstream is dependent on the magnetic field strength of these waves. The energetic ion energy flux is higher in the regions with a weaker magnetic field. The possible explanation is that the ions can be trapped by the nonlinear upstream waves. Then the energetic ions were accelerated by the electric field every time when they bounced in these nonlinear waves. Our observation results are consistent with the recent hybrid simulation results.

     

  • loading
  • [1]
    Golgate S A. Collisionless plasma shock[J]. Phys. Fluids, 1959, 2(5):485-493
    [2]
    Hamza A M, Meziane K. On turbulence in the quasi-perpendicular bow shock[J]. Planet. Space Sci., 2011, 59(7):475-481
    [3]
    Tsurutani B T, Smith E J, Jones D E. Waves observed upstream of interplanetary shocks[J]. J. Geophys. Res., 1983, 88(A7):5645-5656
    [4]
    Gosiling J T, Thomsen M F, Bame S J, et al. Evidence for specularly reflected ions upstream from the quasi-parallel bow shock[J]. Geophys. Res. Lett., 1982b, 9(12):1333-1336
    [5]
    Gosiling J T, Thomsen M F, Bame S J, et al. Ion reflection and downstream thermalization at the quasi-parallel bow shock[J]. Geophys. Res., 1989, 94(A8):10027-10037
    [6]
    Onsager T G, Thomsen M F, Gosiling G T, et al. Survey of coherent ion reflection at the quasi-parallel bow shock[J]. J. Geophys. Res., 1990, 95(A3):2261-2271
    [7]
    Gosiling J T, Thomsen M F, Bame S J, et al. Observations of two distinct populations of bow shock ions in the upstream solar wind[J]. Geophys. Res. Lett., 1978, 5(11):957-960
    [8]
    Gosiling J T, Asbridge J R, Bame S J, et al. Observations of two distinct populations of bow shock ions in the upstream solar wind[J]. Geophys. Res. Lett., 1987, 5(11):4-8
    [9]
    Hoppe M M, Russell C T, Frank L A, et al. Upstream hydromagnetic-waves and their association with backstreaming ion populations——Isee-1 and 2 observations[J]. J. Geophys. Res., 1981, 86(6):4471-4492
    [10]
    Blandford R, Eichler D. Particle acceleration at astrophysical shocks: A theory of cosmic ray origin[J]. Phys. Reports, 1987, 154(1):1-75
    [11]
    Gary S P. Electromagnetic ion/ion instabilities and their consequences in space plasmas: A review[J]. Space Sci. Rev., 1991, 56(3-4):373-415
    [12]
    Lu Q M, Xia L D, Wang S. Hybrid simulations of parallel and oblique electromagnetic alpha/proton instabilities in the solar wind[J]. J. Geophys. Res., 2006, 111(A09):A09101
    [13]
    Zank G P, Rice W K M, Wu C C. Particle acceleration and coronal mass ejection driven shocks: A theoretical model[J]. J. Geophys. Res., 2000, 105(A11):25079-25095
    [14]
    Giacalone J. Large-scale hybrid simulations of particle acceleration at a parallel shock[J]. Astrophys. J., 2004, 609(1):452-458
    [15]
    Zank G P, Li G, Verkhoglyadova O. Particle acceleration at interplanetary shocks[J]. Space Sci. Rev., 2007, 130(1/2/3/4):255-272
    [16]
    Lever E L, Quest K B, Shapiro V D. Shock surfing vs. shock drift acceleration[J]. Geophy. Res. Lett., 2001, 28(7):1367-1370
    [17]
    Shapiro V D, Er D. Shock surfing acceleration[J]. Planet. Space Sci., 2003, 51(11):665-680
    [18]
    Zank G P, Pauls H L, Cairns I H, et al. Interstellar pickup ions and quasi-perpendicular shocks: Implications for the termination shock and interplanetary shocks[J]. J. Geophys. Res., 1996, 101(A1):457-477
    [19]
    Escoubet C P, Fehringer M, Goldstein M. The Cluster mission[J]. Ann. Geophys., 2001, 19:1197-1200
    [20]
    Lefebvre B, Seki Y, Schwartz S J, et al. Reformation of an oblique shock observed by Cluster[J]. J. Geophy. Res., 2009, 114(A11):A11107
    [21]
    Balogh A, Carr C M, Acuña M H, et al. The Cluster magnetic field investigation: Overview of in-flight performance and initial results[J]. Ann. Geophys., 2001, 19:1207-1217
    [22]
    Reme H, Aoustin C, Bosqued J M, et al. First multispacecraft ion measurements in and near the Earth's magnetosphere with the identical Cluster Ion Spectrometry (CIS) experiment[J]. Ann. Geophys., 2001, 19:1303-1354
    [23]
    Su Y Q, Lu Q M, Huang C, et al. Particle acceleration and generation of diffuse superthermal ions at a quasi-parallel collisionless shock: Hybrid simulations[J]. J. Geophys. Res., 2012, 117(A08):A08107
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(1083) PDF Downloads(1771) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return