Volume 34 Issue 2
Mar.  2014
Turn off MathJax
Article Contents
Wang Jian, Ji Shengyun, Wang Hongfa, Lu Dongming, Wang Xianyi. Method for determining the critical frequency and propagation factor at the path midpoint from maximum usable frequency and its propagation delay based on oblique sounder[J]. Journal of Space Science, 2014, 34(2): 160-167. doi: 10.11728/cjss2014.02.160
Citation: Wang Jian, Ji Shengyun, Wang Hongfa, Lu Dongming, Wang Xianyi. Method for determining the critical frequency and propagation factor at the path midpoint from maximum usable frequency and its propagation delay based on oblique sounder[J]. Journal of Space Science, 2014, 34(2): 160-167. doi: 10.11728/cjss2014.02.160

Method for determining the critical frequency and propagation factor at the path midpoint from maximum usable frequency and its propagation delay based on oblique sounder

doi: 10.11728/cjss2014.02.160
  • Received Date: 2013-04-23
  • Rev Recd Date: 2013-09-06
  • Publish Date: 2014-03-15
  • Accurately determining critical frequency and propagation factor of ionosphere was important to frequency forecast and management of short-wave communication. Oblique sounder provide a valid method for real-time observation of it. A new practicable method was presented for determining f0F2 and M(3000)F2 at the path midpoint from the oblique sounding data, which was based on simple oblique ray theory and only rely on maximum observation frequency and its propagation delay. The inversion from oblique sounding data on the Changchun-Jingyang and Xinxiang-Chifeng path, were compared with the vertical sounding data in Beijing during October 2009. According to analysis, the stability, accuracy and practicability of the new method are validated. The results show that the root-mean-square error of the new inverse method is 0.48MHz, and the relative root-mean-square error is 10.50%. It is obvious that the new inverse method is better than Smith's method and reference ionosphere of China. Moreover, the method is simple and easy to use. It provides the basis for frequency forecast and management of short-wave communication, and help to know ionospheric variational characteristics.

     

  • loading
  • [1]
    Chen Gang, Zhao Zhengyu, Zhang Yuannong, et al. Application of the oblique ionogram as vertical ionogram[J]. Sci. China. 2012, 55(5):1240-1244
    [2]
    Rao N N. Inversion of sweep-frequency sky-wave backscatter leading edge for quasiparabolic ionospheric layer parameters[J]. Radio Sci., 1974, 9(10):845-847
    [3]
    Liu Wen, Jiao Peinan, Wang Junjiang. An inverse algorithm of oblique ionogram and its stability[J]. Chin. J. Radio Sci., 2003, 18(6):597-601. In Chinese (柳文, 焦培南, 王俊江. 斜测电离图反演及其不稳定性研究[J]. 电波科学学报, 2003, 18(6):597-601)
    [4]
    Xu Tong. Study on Genetic Inverse Method for Ionospheric Parameters from VI and Oblique Ionograms[D]. Xi'an:Xidian University, 2006. In Chinese (徐彤. 垂直和斜向探 测电离层参数反演遗传算法研究[D]. 西安: 西安电子科技大学, 2006)
    [5]
    Kotovich G V, Kim A G, Ya S, et al. Determining the f0 F2 critical frequency at the path midpoint from oblique sounding data based on the Smith method[J]. Geomag. Aeron., 2006, 46(4):517-521
    [6]
    Chang Mei, Liu Xuanmou. Calculation of electron density profiles from oblique ionogram[J]. Wuhan Univ. J. Nat. Sci., 1993(1):119-121. In Chinese (常梅, 刘选谋. 用斜电离图反演电离层电子密度剖面[J]. 武汉大学学报:自然科学版, 1993(1):119-121)
    [7]
    CCIR. CCIR Atlas of Ionospheric Characteristics[R]. Geneva: CCIR, 1991
    [8]
    International Telecommunication Union. Definitions of maximum and minimum transmission frequencies[R], Rec. ITU-R P. 373-1. Geneva: ITU, 2008
    [9]
    Wang Jian, Feng Xiaozhe, Cheng Li. Basic MUF observation and comparison of HF radio frequency prediction based on different ionosphere models[C]//The 9th International Symposium on Antennas, Propagation, and EM Theory. Guangzhou: IEEE, 2010
    [10]
    International Telecommunication Union. Method for the prediction of the performance of HF circuits[R], Rec. ITU-R P.533-10. Geneva: ITU, 2009
    [11]
    International Telecommunication Union. Methods of basic MUF, operational MUF and ray-path prediction[R], Rec. ITU-R P.1240-1. Geneva: ITU, 2007
    [12]
    International Telecommunication Union. Reference ionospheric characteristics[R], Rec ITU-R P.1239-1. Geneva: ITU, 2008
    [13]
    Chen Chun, Wu Zhensun, Sun Shuji, et al. MUF variability at Haikou[C]//The 8th International Symposium on Antennas, Propagation, and EM Theory. Kunming: IEEE, 2008
    [14]
    Liu Ruiyuan, Quan Kunhai, Dai Kailiang, et al. A corrected method of the International Reference Ionosphere to be used in Chinese region[J]. Chin. J. Geophys., 1994, 37(4):422-432. In Chinese (刘瑞源, 权坤海, 戴开良, 等, 国际参考 电离层用于中国地区时修正计算方法[J]. 地球物理学报, 1994, 37(4):422-432)
    [15]
    Wang Jian, Zhao Hongmei, Fu Wei. Further comparison of basic MUF prediction based on different ionosphere models during medium solar activity epochs[C]//The 10th International Symposium on Antennas, Propagation, and EM Theory. Xi'an: IEEE, 2012
    [16]
    Wang Jian, Feng Xiaozhe, Zhao Hongmei, et al. Refined study of HF frequency prediction method in China region[J]. Chin. J. Geophys., 2013, 56(6):1797-1808. In Chinese (王健, 冯晓哲, 赵红梅, 等. 高频频率预测方法中国区域的精细 化研究. 地球物理学报, 2013, 56(6):1797-1808)
    [17]
    Xu Bin, Wu Yonghong, Liu Yimin. Maximum usable frequency adaptive prediction[J]. Chin. J. Radio Sci., 2010, 26(4):699-703. In Chinese (徐彬, 吴永宏, 刘毅敏. 最高可用频 率自适应预报算法研究[J]. 电波科学学报, 2011, 26(4):699-703)
    [18]
    Liu Yanan, Liu Xuecai, Wang Jian, et al. Adaptive prediction of maximum usable frequency in high-frequency communication[J]. Chin. J. Space Sci., 2013, 33(3):285-291. In Chinese (刘亚南, 刘学才, 王健, 等. 高频通信最 大可用频率的自适应预报[J]. 空间科学学报, 2013, 33(3):285-291)
    [19]
    Huo Jinhai, Wang Jian, Wu Liqiang, et al. Short-term forecasting method of maximum usable frequency for HF communication based on oblique sounder[C]//The 2nd international conference on Measurement, Instrumentation and Automation. Switzerland: Trans. Tech. Public., 2013: 1676-1681
    [20]
    Zhu Zhenfei, Liu Yimin, Wu Yonghong, et al. A method of link status inquiry for HF network dynamic frequency management[J]. Chin. J. Radio Sci., 2013, 28(3):467-471. In Chinese (朱振飞, 刘毅敏, 吴永宏, 等. 短波网动态频率管理系统的状态查询设计[J]. 电波科学学报, 2013, 28(3):467-471)
    [21]
    Wang Jian, Hui Shouqiang, Fu Wei, et al. Error characteristic analysis and accuracy optimizing idea of HF single site location[J]. Chin. J. Radio Sci., 2010, 25(5):925-933. In Chinese (王健, 惠守强, 付炜, 等. 高频单站 定位误差特性分析及精度优化构想[J]. 电波科学学报, 2010, 25(5):925-933)
    [22]
    Wang Jian, Fu Wei, Feng Xiaozhe, et al. Technique on high-frequency single-site location in short distance[J]. Elect. Inf. Warf. Tech., 2009, 24(1):25-28. In Chinese (王健, 付炜, 冯晓哲, 等. 近距离高频单站定位技术[J]. 电子信息对抗技术, 2009, 24(1):25-28)
    [23]
    Feng Xiaozhe, Huang Changli. Quasi-parabolic ionospheric layer parameters realtime data modification in support of single station location for HFDF system[J]. Elect. Inf. Warf. Tech., 2008, 23(5):22-26. In Chinese (冯晓哲, 黄昌理. 短波单站定位中的准抛物电离层参数实时修正[J]. 电子信息对抗技术, 2009, 23(5):22-26)
    [24]
    Wieder B. Some results of a sweep-frequency propagation experiment over a 1150 km east-west path[J]. J. Geophys. Res., 1955, 60(4):395-400
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(1126) PDF Downloads(2022) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return