Volume 34 Issue 4
Jul.  2014
Turn off MathJax
Article Contents
Yang Shichao, Zhang Xianguo, Wang Yue, Wang Chunqin, Chang Zheng, Qin Murong, Wang Shijin. Pitch Angle Distribution Research of Radiation Belt Protons Based on the NOAA Data[J]. Chinese Journal of Space Science, 2014, 34(4): 390-397. doi: 10.11728/cjss2014.03.390
Citation: Yang Shichao, Zhang Xianguo, Wang Yue, Wang Chunqin, Chang Zheng, Qin Murong, Wang Shijin. Pitch Angle Distribution Research of Radiation Belt Protons Based on the NOAA Data[J]. Chinese Journal of Space Science, 2014, 34(4): 390-397. doi: 10.11728/cjss2014.03.390

Pitch Angle Distribution Research of Radiation Belt Protons Based on the NOAA Data

doi: 10.11728/cjss2014.03.390 cstr: 32142.14.cjss2014.03.390
  • Received Date: 2013-07-08
  • Rev Recd Date: 2013-10-14
  • Publish Date: 2014-07-15
  • Using the NOAA-12 satellite data, a study on the Pitch Angle Distributions (PADs) of energetic protons is performed during the quiet period of space environment in the Sun-synchronous orbit. The 90° pitch angled proton flux and the anisotropy index n are calculated based on the empirical formula. According to the n values, it's found that the distributions can be classified into three categories: 90° peaked, flattop, and butterfly. For the radiation belt protons, the three types are all existed and have a significant spatial character. The 90° peaked distributions dominate at the edge of inner radiation belt; while at the higher L values region of outer radiation belt, the 90° peaked distributions decrease obviously and the flattop distribution and butterfly distribution gradually increase with the increase of L values. For the 90° peaked distributions, relationship between the anisotropy exponent n and the L values is studied. For inner radiation belt, the n values increase rapidly with the L values increasing; for outer radiation belt, the n values decrease gradually with the L values increasing. The distributions of the radiation belt protons are also studied in two different Magnetic Local Time (MLT) regions for the 250~800keV protons. The results show that the PADs are very similar at the inner radiation belt, but have obvious differences at the higher L values region of outer radiation belt. It indicates that the PADs of radiation belt protons have little dependency on the MLT at the inner radiation belt, while have more dependency on the MLT at the higher L values region of outer radiation belt.

     

  • loading
  • [1]
    Chen Guozhen, Lin Guocheng. The influence of charged particle radiation environment on the spacecrafts at LEO[J]. Chin. Space Sci. Tech., 1994(6):43-48. In Chinese (陈国珍, 林国成. 低地球轨道带电粒子辐射环境对航天器的影响[J]. 中国空间科学技术, 1994(6):43-48)
    [2]
    Wang Tongquan, Shen Yongping. The radiation effects of the space radiation environment[J]. J. Natl. Univ. Def. Tech., 1999, 21(4):36-39. In Chinese (王同权, 沈永平. 空间辐射环境中的辐射效应[J]. 国防科技大学学报, 1999, 21(4):36-39)
    [3]
    Sawyer D M, Vette J I. AP-8 Trapped Proton Environment for Solar Maximum and Solar Minimum[R]. NTIS 77-18983, 1976
    [4]
    Vette J I. The AE-8 Trapped Electron Model Environment[R]. Greenbelt, Maryland: National Space Sience Data Center, 1991
    [5]
    Daly E, Lemaire J, Heynderickx D, et al. Problems with models of the radiation belts[J]. Nucl. Sci., IEEE Trans., 1996, 43(2):403-415
    [6]
    Heynderickx D, Quaghebeur B, Wera J, et al. New radiation environment and effects models in the European Space Agency's Space Environment Information System (SPENVIS)[J]. Space Weather, 2004, 2(10), doi: 10.1029/2004SW000073
    [7]
    Huston S. Space environments and effects: Trapped proton model[J]. NASA STI/Recon Tech. Report N, 2002, 2:63598
    [8]
    Meffert J D, Gussenhoven M S. CRRESPRO documentation[R]. Phillips Lab Hanscom AFB MA, 1994
    [9]
    Brautigam D H, Bell J T. CRRESELE Documentation[R]. Phillips Lab Hanscom AFB MA, 1995
    [10]
    Reeves G D.Radiation Belt Storm Probes: A new mission for space weather forecasting[J]. Space Weather, 2007, 5(11):S11002
    [11]
    Tverskaya L. Dynamics of the Earth's radiation belts[J]. Moscow Univ. Phys. Bull., 2010, 65(4):246-251
    [12]
    Yang Xiaochao, Wang Shijin, Liang Jinbao, et al. Multi-directional design research of the sun-synchronous orbit electron detectors[J]. J. Astron., 2012, 33(2):281-284. In Chinese (杨晓超, 王世金, 梁金宝, 等. 太阳同步轨道电子探测器的多方向设计研究[J]. 宇航学报, 2012, 33(2):281-284)
    [13]
    Armstrong T W, Colborn B L, Watts J W. Characteristics of Trapped Proton Anisotropy at Space Station Freedom Altitudes[R]. National Aeronautics and Space Administration, Huntsville, AL (USA). George C. Marshall Space Flight Center, 1990
    [14]
    Badhwar G D, Konradi A. Conversion of omnidirectional proton fluxes into a pitch angle distribution[J]. J. Spacecr. Rock., 1990, 27(3):350-352
    [15]
    Glauert S A, Richard B H. Calculation of pitch angle and energy diffusion coefficients with the PADIE code[J]. J. Geophys. Res.: Space Phys., 2005, 110(A4)
    [16]
    Kuznetsov N V, Nikolayeva N I. Empirical model of pitch-angle distributions of trapped protons on the inner boundary of the Earth's radiation belt[J]. Cosmic Res., 2012, 50(1):13-20
    [17]
    Søraas F, Aarsnes K, Lundblad J Å, Evans D S. Enhanced pitch angle scattering of protons at mid-latitudes during geomagnetic storms[J]. Phys. Chem. Earth Part C: Solar, Terr. Planet. Sci., 1999, 24(1):287-292
    [18]
    Leonov A, Cyamukungu M, Cabrera J, Leleux P, et al. Pitch angle distribution of trapped energetic protons and helium isotope nuclei measured along the Resurs-01 No.4 LEO satellite[C]//Annales Geophysicae. European Geosciences Union, 2005:2983-2987
    [19]
    Evans H, Daly E. Anisotropies in the low altitude radiation environment[J]. J. Brit. Interplanet. Soc., 1995, 48:149-151
    [20]
    Le Guiming. The anisotropic characteristics analysis of energetic proton intensity in the inner radiation belts at low height[J]. Manned Spacefl., 2006(03):62-64. In Chinese (乐贵明. 低高度内辐射带高能质子强度各向异性特征分析[J]. 载人航天, 2006(03):62-64)
    [21]
    Raben V. TIROS/NOAA Satellite Space Environment Monitor Data Archive Documentation: 1995 Update[R]. NOAA Technical Memrandum ERL SEL-86, 1995
    [22]
    Parker E N. Newtonian development of the dynamical properties of ionized gases of low density[J]. Phys. Rev., 1957, 107(4):924-933
    [23]
    Gannon J, Li X, Heynderickx D. Pitch angle distribution analysis of radiation belt electrons based on Combined Release and Radiation Effects Satellite Medium Electrons A data[J]. J. Geophys. Res.: Space Physics, 2007, 112(A5):A05212
    [24]
    Siegl M, Evans H D, Daly E J, et al. Inner belt anisotropy investigations based on the Standard Radiation Environment Monitor (SREM)[J]. Nucl. Sci., 2010, 57(4):2017-2023
    [25]
    Roederer J G. Dynamics of geomagnetically trapped radiation[M]//Physics and Chemistry in Space. Berlin: Springer, 1970
    [26]
    Selesnick R, Blake J. Relativistic electron drift shell splitting[J]. J. Geophys. Res., 2002, 107(A9):1265
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(1668) PDF Downloads(1483) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return