Volume 34 Issue 4
Jul.  2014
Turn off MathJax
Article Contents
Wang Houmao, Wang Yongmei, Wang Yingjian, Li Yongzhi. Wind Retrieval and Error Analysis of Ground-based Fabry-Perot Interferometer for the Middle and Upper Atmosphere[J]. Chinese Journal of Space Science, 2014, 34(4): 415-425. doi: 10.11728/cjss2014.04.415
Citation: Wang Houmao, Wang Yongmei, Wang Yingjian, Li Yongzhi. Wind Retrieval and Error Analysis of Ground-based Fabry-Perot Interferometer for the Middle and Upper Atmosphere[J]. Chinese Journal of Space Science, 2014, 34(4): 415-425. doi: 10.11728/cjss2014.04.415

Wind Retrieval and Error Analysis of Ground-based Fabry-Perot Interferometer for the Middle and Upper Atmosphere

doi: 10.11728/cjss2014.04.415 cstr: 32142.14.cjss2014.04.415
  • Received Date: 2013-09-27
  • Rev Recd Date: 2014-02-28
  • Publish Date: 2014-07-15
  • Fabry-Perot Interferometer (FPI) is widely used for the wind observation of the middle and upper atmosphere. The wind retrieval algorithm of ground-based FPI has been studied globally for a few years, but a detailed analysis of retrieval precision factors has not been reported yet. Currently, in China, a few studies of FPI wind retrieval based on simulation data have been carried out. However, the studies did not make a detailed analysis of wind retrieval factors yet, such as the airglow intensity, the number of interference fringes, the fringe center and the focal length. In this paper, wind velocity retrieval of the middle and upper atmosphere is based on the ground-based observation mode (one direction at zenith and four cardinal directions with 45° zenith angle) using FPI facility from the Meridian Space Weather Monitoring Project, which included the pre-processing, the fringe center determination, the fringe radius calculation and the wind velocity retrieval. For validation, the wind parameter of 8 days (May 6-13, 2010) retrieved from observation data using ten fringes were compared with the FPI wind products with an average deviation of 2.7m·s-1 (557.7nm airglow), 5.5m·s-1 (630.0nm airglow) and 7.7m·s-1 (892.0nm airglow) respectively. Furthermore, the detailed analysis of the influencing factors mentioned above was also carried out. The results demonstrate that the stronger airglow intensity is, the higher outer fringe radius calculation precision can be obtained, and more usable fringes can be chosen. Besides, the center determination deviation with ± 2pixel (using 5 interference fringes) and ± 1pixel (using 10 interference fringes) and the focal length deviation with ± 10mm have negligible effects on wind retrieval precision, but can cause large retrieval errors when the deviations exceed the ranges mentioned above.

     

  • loading
  • [1]
    Han Weihua, Wang Yongmei, Lü Jiangong, et al. Auto-processing of middle and upper atmosphere wind FPI interference fringe pattern[J]. Sci. Tech. Eng., 2010, 10(10):2420-2423. In Chinese (韩威华, 王咏梅, 吕建工, 等. 中高层大气风场星载FPI干 涉条纹的处理[J]. 科学技术与工程, 2010, 10(10):2420-2423)
    [2]
    Zhang S, Shepherd G. On the response of the O (1S) dayglow emission rate to the Sun's energy input: An empirical model deduced from WINDII/UARS global measurements[J]. J. Geophys. Res., 2005, 110, A03304
    [3]
    Huang Yiyi, Makela J J, Sweson G R. Simulations of imaging Fabry-Perot interferometers for measuring upper-atmospheric temperatures and winds[J]. Appl. Opt., 2012, 51(17):3787-3800
    [4]
    Killen T L, Kennedy B C, Hays P B, et al. Image plane detector for the dynamics explorer Fabry-Perot interferometer[J]. Appl. Opt., 1983, 22(22):3503-3513
    [5]
    Killeen T L, Hays P B. Doppler line profile analysis for a multichannel Fabry-Perot interferometer[J]. Appl. Opt., 1984, 23(4):612-620
    [6]
    Skinner W R, Hays P B, Abreu V J. High resolution Doppler imager[C]. Ann Arbor: International Geoscience and Remote sensing Symposium, 1987: 673-676
    [7]
    Abreu V J, Hays P B, Skinner W R. The high resolution Doppler imager[J]. Opt. Photon. News, 1991, 2(10):28-30
    [8]
    Hays P B, Abreu B J, Dobbs M E, et al. The high-resolution Doppler imager on the upper atmosphere research satellite[J]. J. Geophys. Res., 1993, 98(6):10713-10723
    [9]
    Killen T L, Skinnerm W R, Johnson R M, et al. TIMED Doppler interferometer (TIDI)[J]. SPIE, 1999, 3756:289-301
    [10]
    Skinner W R, Niciejewski R J, Killen T L, et al. Operational performance of the TIMED Doppler interferometer (TIDI)[C]. SPIE, 2003, 5157:47-57
    [11]
    Killeen T L, Wu Q, Solomon S C, et al. TIMED Doppler Interferometer: Overview and recent results[J]. J. Geophys. Res., 2006, 111, A10S01, doi:10.1029/ 2005JA011484
    [12]
    Hernandez G, Roble R G, Ridley E C, Allen J H. Thermospheric response observed over Fritz Peak, Colorado, during two large geomagnetic storms near solar cycle maximum[J]. J. Geophys. Res., 1982, 87(A11):9181-9192
    [13]
    Niciejewski R, Killeen T L, Turnbull M. Ground-based Fabry-Perot interferometry of the terrestrial nightglow with a bare charge-coupled device: remote field site deployment[J]. Opt. Eng., 1994, 33:2457-2465
    [14]
    Wu Q, Gablehouse R D, Solomon S C, et al. A new Fabry-Perot interferometer for upper atmosphere research[J]. Proc. SPIE, 5660:218-227
    [15]
    Meriwether J W Jr, Shih P, Killen T L, et al. Nighttime thermospheric winds over Sondre Stromfjord, Greenland[J]. Geophys. Res. Lett., 1984, 9:931-934
    [16]
    Meriwether J W Jr, Moody W, BIondi M A, et al. Optical interferometric measurements of winds at Arequipa[J]. Peru. J. Geophys. Res., 1986, 91:5557-5566
    [17]
    Shiokawa K, Kadota T, Ejiri M K, et al. Three-channel imaging Fabry-Perot interferometer for measurement of mid-latitude airglow[J]. Appl. Opt., 2001, 40(24):4286-4296
    [18]
    Shiokawa K, Kadota T, Otsuka Y, et al. A two-channel Fabry-Perot interferometer with thermoelectric-cooled CCD detectors for neutral wind measurement in the upper atmosphere[J]. Earth Planets Space, 2003, 55:271-275
    [19]
    Yuan Wei, Xu Jiyao, Ma Ruiping, et al. First observation of mesospheric and thermospheric winds by a Fabry-Perot interferometer in China[J]. Chin. Sci. Bull., 2010, 55(35):4046-4051. In Chinese (袁伟, 徐寄遥, 马瑞平, 等. 我国光学干涉仪对中高层大气风场的首次观测[J]. 科学通报, 2010, 55(35):3378-3383)
    [20]
    Jiang G Y, Xu J Y, Yuan W, et al. A comparison of mesospheric winds measured by FPI and meteor radar located at 40N[J]. Sci. China Tech. Sci., 2012, 55: doi:10.1007/ s11431-012-4773-1
    [21]
    Wang Houmao, Wang Yongmei, Wang Yingjian. Data processing of the middle and upper atmospheric wind retrieval based on the Fabry-Perot Interferometer[J]. Chin. J. Geophys., 2013, 56(4):1095-1101. In Chinese (王后茂, 王咏梅, 王英鉴. 基于Fabry-Perot的中高层大气风速反演数据处理研究[J]. 地球物理学报, 2013, 56(4):1095-1101)
    [22]
    Wang Yongmei, Fu Liping, Du Shusong, et al. Development for detecting upper atmospheric wind and temperature from satellite[J]. Chin. J. Space Sci., 2009, 29(1):1-5. In Chinese (王咏梅, 付利平, 杜述松, 等.中高层大气风场和温度场星载探测 技术研究进展[J].空间科学学报, 2009, 29(1):1-5)
    [23]
    Zhang Chunmin, Xiang Libin, Zhao Baochang. Velocity and temperature measurement of upper atmosphere wind field using Fabry-Perot interferometer[J]. J. Xi'an Jiaotong Univ., 2000, 34(4):97-99. In Chinese (张淳民, 相里斌, 赵葆常. 用Fabry-Perot干涉仪测量上层大气风场的速度和温度[J]. 西安交通 大学学报, 2000, 34(4):97-99)
    [24]
    Wang Li, Zhou Yi, Hua Dengxin, et al. Theoretical research and simulation of the atmospheric wind field and temperature based on the Fabry-Perot interferometer[J]. Acta Opt. Sin., 2011, 31(10):1001001-1001001-6. In Chinese (汪丽, 周毅, 华灯鑫, 等. 基于法布里-珀罗干涉仪的大气风场及温度场 探测理论研究及仿真[J]. 光学学报, 2011, 31(10):1001001-1001001-6)
    [25]
    Zhao Zhengqi, Zhou Xiaoshan, Ai Yong. Wind-velocity detection in upper atmosphere with scanning Fabry-Perot interferometer[J]. J. Appl. Opt., 2006, 27(6):558-562. In Chinese (赵正启, 周小珊, 艾勇. 扫描式法布里-珀罗干 涉仪测量高空大气风速[J]. 应用光学, 2006, 27(6):558-562)
    [26]
    Li Hao, Zhang Yange. Simulation and analysis of thermospheric wind velocity[J]. J. Appl. Opt., 2009, 30(2):285-290. In Chinese (李浩, 张燕革. 模拟 大气风场及其数据处理技术的研究[J]. 应用光学, 2009, 30(2):285-290)
    [27]
    E Fei, Gao Qiuyan, Ai Yong. A New Method of processing the Fabry-Perot interference fringes[J]. Opt. Tech., 2009, 35(4):499-501. In Chinese (鄂非, 高秋燕, 艾勇. 一种新的Fabry-Perot干涉条纹处理方法[J]. 光学技 术, 2009, 35(4):499-501)
    [28]
    Han Weihua, Lü Jiangong, Wang Yongmei, et al. Image data processing of space-borne Fabry-Perot interferometer prototype[J]. Chin. J. Space Sci., 2011, 31(6):784-788. In Chinese (韩威华, 吕建工, 王咏梅, 等. Fabry-Perot测风干涉仪数据处理[J]. 空间科学学报, 2011, 31(6):784-788)
    [29]
    Lim J S. Two-Dimensional Signal and Image Processing[M]. Englewood Cliffs, NJ: Prentice Hall, 1990: 469-476
    [30]
    Lim J S. Two-Dimensional Signal and Image Processing[M]. Englewood Cliffs, NJ: Prentice Hall, 1990: 548
    [31]
    Kubota M. A Study on Middle-Scale Variations of Thermospheric Neutral Winds Associated with auroral activity over Syowa Station Antarctica[D]. Tohoku: Tohoku University, 1996
    [32]
    Shepherd G G, Guit W A, Miller D W, et al. WIND II wide-angle michelson Doppler image interferometer for space lab[J]. Appl. Opt., 1985, 24(11):1571-1583
    [33]
    Hays P B. Circle to line interferometer optical system[J]. Appl. Opt., 1990, 29(10):1482-1489
    [34]
    Killeen T L, Roble R G. Thermosphere dynamics: Contributions from the first 5 years of the dynamics explorer program[J]. Rev. Geophys., 1988, 26:329-367
    [35]
    Shiokawa K, Otsuka Y, Oyama S, et al. Development of low-cost sky-scanning Fabry-Perot interferometers for airglow and auroral studies[J]. Earth Planets Space, 2012, 64:1033-1046
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(1624) PDF Downloads(1578) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return