Volume 34 Issue 6
Nov.  2014
Turn off MathJax
Article Contents
Zhang Hui, Zhu Min, Zhou Jianliang, Wang Yong. Station-keeping control of solar sail Lissajous orbit with attitude angles amplitude constraint[J]. Chinese Journal of Space Science, 2014, 34(6): 872-880. doi: 10.11728/cjss2014.06.872
Citation: Zhang Hui, Zhu Min, Zhou Jianliang, Wang Yong. Station-keeping control of solar sail Lissajous orbit with attitude angles amplitude constraint[J]. Chinese Journal of Space Science, 2014, 34(6): 872-880. doi: 10.11728/cjss2014.06.872

Station-keeping control of solar sail Lissajous orbit with attitude angles amplitude constraint

doi: 10.11728/cjss2014.06.872 cstr: 32142.14.cjss2014.06.872
  • Received Date: 2013-11-04
  • Rev Recd Date: 2014-06-22
  • Publish Date: 2014-11-15
  • The orbital dynamic equations of solar sail spacecraft have non-affine and nonlinear properties with attitude angles as the station-keeping control input. The linearization method has been widely used in settling down station-keeping problem of solar sail spacecraft orbit. However, the linear model, obtained from local linearization around the libration point, inherently has the approximate scope which results in the constraint of the orbit amplitude as well as the constraint of the attitude angles amplitude. In this paper, the model error of solar sail linear dynamic system is presented and the constraint of attitude angles amplitude is calculated. As a result of the controller amplitude constraint, the trajectory control ability is bounded, raising questions about the maximum allowable orbit injection error. Then, the controllability Gramian matrix is used to estimate the maximum allowable orbit injection error. Furthermore, the Linear Quadratic Regulator (LQR) controller considering maximum allowable orbit injection error is designed and applied to solar sail CR3BP nonlinear model. The numerical simulations indicate that Lissajous orbit injection error convergence as well as 20 years' orbit station-keeping with high precision have been realized.

     

  • loading
  • [1]
    Leipold M, Seboldt W, Lingner S, et al. Mercury sun-synchronous polar orbiter with a solar sail[J]. Acta Astron., 1996, 39(1-4): 143-151
    [2]
    Leipold M. To the Sun and Pluto with solar sails and micro-sciencecraft[J]. Acta Astron., 1999, 45(4):549-555
    [3]
    Hughes G W, Macdonald M, McInnes C R, et al. Analysis of a solar sail mercury sample return mission[C]//55th International Astronautical Congress. Vancouver: 2004, IAC-04-S.2.b.08
    [4]
    Macdonald M, McInnes C R. A near-term roadmap for solar sailing[C]//55th International Astronautical Congress. Vancouver: 2004, IAC-04-U.1.09
    [5]
    Howell K C, Guzman J J. Spacecraft trajectory design in the context of a coherent restricted four-body problem with application to the MAP mission[C]//International Astronautical Congress 51st. Rio de Janeiro: IAF, 2000. Paper 00-A.5.06
    [6]
    McInnes C R, McDonald A, Si mmons J, MacDonald E. Solar Sail parking in restricted three-body system[J]. J. Guid. Control Dynam., 1994, 17(2):399-406
    [7]
    Baoyin Hexi, McInnes C R. Solar Sail Equilibria in the Elliptical Restricted Three-Body Problem[J]. J. Guid. Control Dyn., 2006, 29(3):538-543
    [8]
    Baoyin Hexi, McInnes C R. Solar sail halo orbits at the Sun-Earth artificial L1 point[J]. Celest. Mech. Dyn. Astron., 2006, 94(2):155-171
    [9]
    Hou Xiyun, Liu Lin. On orbit control of spacecrafts with solar sail around the Earth-Moon collinear libration point[J]. J. Astron., 2009, 30(6):2250-2257. In Chinese (侯锡云, 刘林. 利用太阳帆定点探测器在地-月系共线平动点附近的探讨[J]. 宇航学报, 2005, 30(6):2250-2257)
    [10]
    Qian Hang, Zheng Jianhua, Yu Jianzheng, Gao Dong, Dynamics and Control of Displaced Orbits for Solar Sail Spacecraft[J]. Chin. J. Space Sci., 2013, 33(4):458-464. In Chinese (钱航,郑建华,于锡峥,高东. 太阳帆航天器悬浮轨道动力学与控制[J]. 空间科学学报, 2013, 33(4):458-464)
    [11]
    McInnes C R. Artificial Lagrange points for a non-perfect solar sail[J]. J. Guid. Control Dyn., 1999, 22(1):185-187
    [12]
    Farquhar R. Limit-cycle analysis of a controlled libration-point satellite[J]. J. Astron. Sci., 1970, 17(5):267-291
    [13]
    Forward R L. Satellite-a spacecraft that does not orbit[J]. J. Spacecr,, 1991, 28(5):606-611
    [14]
    Bookless J, McInnes C R. Control of lagrange point orbits using solar sail propulsion[J]. Acta Astron., 2008, 62(2): 159-176
    [15]
    Biggs J D, McInnes C R, Waters T. Stabilizing periodic orbits above the elliptic plane in the solar sail 3-body probe[C]//59th International Astronautical Congress. Glasgow, Scotland: IAC, 2008, IAC-08.C1.5.12
    [16]
    Waters T J, McInnes C R. Invariant manifolds and orbit control in the solar sail three-body problem[J]. J. Guid. Control Dyn., 2008, 31(3):554-562
    [17]
    Khalil H K, Grizzle J W. Nonlinear Systems[M]. Upper Saddle River: Prentice Hall, 2002
    [18]
    Waters T J, McInnes C R. Invariant manifolds and orbit control in the solar sail three-body problem[J]. J. Guid. Control Dyn., 2008, 31(3):554-562
    [19]
    Wie Bong. Space Vehicle Dynamics and Control[M]. Tempe, Arizona: AIAA Education Series, 1998:249-255
    [20]
    Lawrence D, Piggott S. Solar Sailing Trajectory Control for Sub-L1 Station keeping[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit 2004. Rhode Island: AIAA, 2004: 2004-5014
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(1468) PDF Downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return