Volume 36 Issue 1
Jan.  2016
Turn off MathJax
Article Contents
ZHOU Xunxiu, WANG Xinjian, HUANG Daihui, JIA Huanyu. Effects of Thunderstorms Electric Field on Intensity of Cosmic Ray Electronsormalsize[J]. Journal of Space Science, 2016, 36(1): 49-55. doi: 10.11728/cjss2016.01.049
Citation: ZHOU Xunxiu, WANG Xinjian, HUANG Daihui, JIA Huanyu. Effects of Thunderstorms Electric Field on Intensity of Cosmic Ray Electronsormalsize[J]. Journal of Space Science, 2016, 36(1): 49-55. doi: 10.11728/cjss2016.01.049

Effects of Thunderstorms Electric Field on Intensity of Cosmic Ray Electronsormalsize

doi: 10.11728/cjss2016.01.049
  • Received Date: 2015-02-04
  • Rev Recd Date: 2015-09-01
  • Publish Date: 2016-01-15
  • Correlation study on the intensity change of the cosmic rays and the thunderstorms electric field is very important in understanding the acceleration mechanism of secondary charged particles caused by electric field. In this paper, Monte Carlo simulations were performed to study the effects of the thunderstorms electric field on the electrons in extensive air showers. High up in the atmosphere, the number of electrons increased exponentially in a field of 1000V·cm-1. And at an atmospheric depth about 300g·cm-2, the electrons reached a maximum. These results were consistent with the theory of Relativistic Runaway Electron Avalanche (RREA). The simulations also indicated that in order to obtain a clearly observable effect in the ground experiments, the thunderstorms electric field should be located not higher than 600m above the detector, and the length of the electric field should be about 2000m. These preliminary results are helpful to understand the correlation between the thunderstorms electric field and the electron intensity of ground cosmic rays, and provide important information to further study of the effects on secondary cosmic ray particles in thunderstorms electric field.


  • loading
  • [1]
    MACGORMAN D R, RUST W D. The Electrical Nature of Storms[M]. New York: Oxford University Press, 1998, 79(46):422
    STOLZENBURG M, MARSHALL T C, RUST W D, et al. Electric field values observed near lightning flash initiations[J]. Geophys. Res. Lett., 2007, 34(4):L04804
    MARSHALL T C, STOLZENBURG M, MAGGIO C R, et al. Observed electric fields associated with lightning initiation[J]. Geophys. Res. Lett., 2005, 32(3):L03813
    ZHOU Wei, ZHANG Yang, ZHANG Yijun, et al. Occurrence regularity of CPT discharge event in negative cloud-to-ground lightning[J]. Acta Phys. Sin., 2014, 63(1):019202 (周威, 张阳, 张义军, 等. 负地闪CPT放电事件的发生规律研 究[J]. 物理学报, 2014, 63(1):019202)
    WU Bin, ZHANG Guangshu, WANG Yanhui, et al. The multi-parameter observation of lightning M changes in northeastern part of the Qinghai-Tibet Plateau[J]. Acta Phys. Sin., 2013, 62(18):189202 (武斌, 张广庶, 王彦辉, 等. 青 藏高原东北部闪电M变化多参量观测[J]. 物理学报, 2013, 62(18):189202)
    LIU Dongxia, QIE Xiushu, WANG Zhichao, et al. Characteristics of lightning radiation source distribution and charge structure of squall line[J]. Acta Phys. Sin., 2013, 62(21):219201 (刘冬霞, 郄秀书, 王志超, 等. 飑线系统中的闪电辐射源分布特征及云内电荷结构讨论[J]. 物理学报, 2013, 62(21):219201)
    WILSON C T R. The electric field of a thundercloud and some of its effects[C]//Proceedings of the Physical Society. London: The Physical Society, 1924, 37:32D-37D
    GUREVICH A V, MILIKH G M, ROUSSEL-DUPRE R. Runaway electron mechanism of air breakdown and preconditioning during a thunderstorm[J]. Phys. Lett.: A, 1992, 165:463-468
    CRAMER E S, DWYER J R, ARABSHAHI S, et al. An analytical approach for calculating energy spectra of relativistic runaway electron avalanches in air[J]. J. Geophy. Res. Space Phys., 2014, 119:7794-7823
    ALEXEENKO V V, CHERNYAEV A B, CHUDAKOV A E, et al. Short perturbations of cosmic ray intensity and electric field in atmosphere[C]//Proceeding of 19th International Cosmic Ray Conference. La Jolla, USA: International Union of Pure and Applied Physics, 1985:352-355
    ALEXEENKO V V, KHAERDINOV N S, LIDVANSKY A S, et al. Transient variations of secondary cosmic rays due to atmospheric electric field and evidence for pre-lightning particle acceleration[J]. Phys. Lett.: A, 2002, 301:299-306
    CHILINGARIAN A, DARYAN A, ARAKELYAN K, et al. Ground-based observations of thunderstorm-correlated fluxes of high-energy electrons, gamma rays, and neu-trons[J]. Phys. Rev.: D., 2010, 82:043009
    CHILINGARIAN A, HOVSEPYAN G, HOVHANNISYAN A. Particle bursts from thunderclouds: Natural particle accelerators above our heads[J]. Phys. Rev.: D., 2011, 83:062001
    WANG Junfang, QIE Xiushu, LU Hong, et al. Effect of thunderstorm electric field on intensity of cosmic ray muons[J]. Acta Phys. Sin., 2012, 61(15):159202 (王俊芳, 郄秀书, 卢红, 等.雷暴电场对宇宙射线次级粒子μ 子 的影响研究[J]. 物理学报, 2012, 61(15):159202)
    Xu Bin, Bie Yeguang, Zou Dan. Study of the Instantaneous change of secondary cosmic ray during thunderstorm[J]. Chin. J. Space Sci., 2012, 32(4):501-505 (徐斌, 别业广, 邹丹, 雷暴期间次级宇宙线粒子强度瞬时变化研究[J]. 空间科学学报, 2012, 32(4):501-505)
    ZHOU Xuemei, YE Ni, ZHU Fengrong, et al. Observing the effect of the atmospheric electric field inside thunderstorms on the EAS with the ARGO-YBJ experi-ment[C]//Proceeding of 32th International Cosmic Ray Conference.Beijing: International Union of Pure and Applied Physics, 2011:287-290
    HUEGE T, UIRICH R, ENGEL R. Monte Carlo simulations of geosynchrotron radio emission from CORSIKA-simulated air showers[J]. Astropart. Phys., 2007, 27:392-405
    BUITINK S, HUEGE T, FALCKE H, et al. Monte Carlo simulations of air showers in atmospheric electric fields[J]. Astropart. Phys., 2010, 33:112
    HECK D, KNAPP J, CAPDEVIELLE J, et al. CORSIKA: A Monte Carlo Code to Simulate Extensive Air Showers[R]: Report-FZKA6019, Forschungszentrum Karlsruhe-Wissenhaltliche Berichte, 1998
    BIELAJEW A F. Electron Transport in ±b E and ±b B Fields, in Monte Carlo Transport of Electrons and Photons[M]. New York: Plenum Press, 1988:421-434
    MARSHALL T C, RISON W, RUST W D, et al. Rocket and balloon observations of electric field in two thunderstorms[J]. J. Geophys. Res., 1995, 100:20815-20828
    DWYER J R. A fundamental limit on electric fields in air[J]. Geophys. Res. Lett., 2003, 30(20):2055
    SYMBALISTY E M D, ROUSSEL-DUPRE R A, YUKHIMUK V A. Finite volume solutions of the relativistic Boltzmann equation for electron avalanche studies[J]. IEEE Trans. Plasma Sci., 1998, 26(5):1575-1582
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(799) PDF Downloads(902) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint