Citation: | YUAN Weimin, OSBORNE Julian P, ZHANG Chen, WILLINGALE Richard. Exploring the Dynamic X-ray Universe: Scientific Opportunities for the Einstein Probe Mission[J]. Chinese Journal of Space Science, 2016, 36(2): 117-138. doi: 10.11728/cjss2016.02.117 |
[1] |
ESA. ‘Cosmic Vision’ Space Science for Europe (2015-2025)[R]. The Netherlands: ESA, 2005
|
[2] |
GEHRELS N, CHINCARINI G, GIOMMI P, et al. The swift gamma-ray burst mission[J]. Astrophys. J., 2004, 611:1005-1020
|
[3] |
GEHRELS N, CANNIZZO J K. How Swift is redefining time domain astronomy[J]. J. High Energy Astrophys., 2015, 7:2-11
|
[4] |
MATSUOKA M, KAWASAKI K, UENO S, et al. The MAXI mission on the ISS: science and instruments for monitoring all-sky X-ray images[J]. Publ. Astron. Soc. Jpn., 2009, 61:999-1010
|
[5] |
MIHARA T. Latest results of the MAXI mission[J]. Publ. Korean Astron. Soc., 2015, 30(2):559-563
|
[6] |
KOMOSSA S, BADE N. The giant X-ray outbursts in NGC 5905 and IC 3599: follow-up observations and outburst scenarios[J]. Astron. Astrophys., 1999, 343(3):775-787
|
[7] |
KOMOSSA S. Tidal disruption of stars by supermassive black holes: status of observations[J]. J. High Energy Astrophys., 2015, 7:148-157
|
[8] |
BURROWS D N, KENNEA J A, GHISELLINI G, et al. Relativistic jet activity from the tidal disruption of a star by a massive black hole[J]. Nature, 2011, 476:421-424
|
[9] |
LIU F K, SHUO Li, KOMOSSA S. A milliparsec supermassive black hole binary candidate in the galaxy SDSS J120136.02+300305.5[J]. Astrophys. J., 2014, 786 (2):103-116
|
[10] |
CIARDI B, LOEB A. Expected number and flux distribution of gamma-ray burst afterglows with high redshifts[J]. Astrophys. J., 2000, 540(2):687-696
|
[11] |
BROMM V, LOEB A. High-redshift gamma-ray bursts from Population Ⅲ progenitors[J]. Astrophys. J., 2006, 642:382-388
|
[12] |
HOSOKAWA T, OMUKAI K, YOSHIDA N, YORKE H W. Protostellar feedback halts the growth of the first stars in the Universe[J]. Science, 2011, 334:1250-1253
|
[13] |
BUTLER N R, BLOOM J S, POZNANSKI D. The cosmic rate, luminosity function, and intrinsic correlations of long gamma-ray bursts[J]. Astrophys. J., 2010, 711:495-516
|
[14] |
SODERBERG A M, BERGER E, PAGE K L, et al. An extremely luminous X-ray outburst at the birth of a supernova[J]. Nature, 2008, 453:469-474
|
[15] |
KANEKO Y, RAMIREZ-RUIZ E, GRANOT J, et al. Prompt and afterglow emission properties of gamma-ray bursts with spectroscopically identified supernovae[J]. Astrophys. J., 2007, 654:385-402
|
[16] |
HEISE J, ZAND J, KIPPEN M, et al. X-ray flashes and X-ray rich gamma ray bursts[C]//Gamma-Ray Bursts in the Afterglow Era. Berlin, Heidelberg: Springer, 2001:16-21
|
[17] |
CORRAL-SANTANA J M, CASARES J, MUÑOZ-DARIAS T, et al. A black hole nova obscured by an inner disk torus[J]. Science, 2013, 339:1048-1051
|
[18] |
FENDER R P, POOLEY G G, BROCKSOPP C, NEWELL S J. Rapid infrared flares in GRS 1915+105: evidence for infrared synchrotron emission[J]. Mon. Not. R. Astron. Soc., 1997, 290:L65-L69
|
[19] |
CORBET R H D. Be/neutron star binaries: a relationship between orbital period and neutron star spin period[J]. Astron. Astrophys., 1984, 141:91-93
|
[20] |
KNIGGE C, COE M, PODSIADLOWSKI P. Two populations of X-ray pulsars produced by two types of supernova[J]. Nature, 2011, 479:372-275
|
[21] |
ACKERMANN M, AJELLO M, ALBERT A, et al. Fermi establishes classical novae as a distinct class of gamma-ray sources[J]. Science, 2014, 345:554-558
|
[22] |
ROMANO P. Seven years with the swift supergiant fast X-ray transients project[J]. J. High Energy Astrophys., 2015, 7:126-136
|
[23] |
MUNO M P, PFAHL E, BAGANOFF F K, et al. An overabundance of transient X-Ray Binaries within 1 parsec of the galactic center[J]. Astrophys. J., 2005, 622:L113-L116
|
[24] |
ABBOTT B P, ABBOTT R, ABBOTT T D, et al. Prospects for observing and localizing gravitational-wave transients with Advanced LIGO and Advanced Virgo[J]. Living Rev. Relat., 2016, arXiv:1304.0670v2. DOI: 10.1007/Irr-2016-1
|
[25] |
TANVIR N, LEVAN A J, FRUCHTER A S, et al. A ‘kilonova’ associated with the short-duration γ-ray burst GRB 130603B[J]. Nature, 2013, 500:547-549
|
[26] |
ZHANG B. Early X-ray and optical afterglow of gravitational wave bursts from mergers of binary neutron stars[J]. Astrophys. J., 2013, 763:22-25
|
[27] |
EVANS P, OSBORNE J P, KENNEA J A, et al. Swift follow-up of IceCube triggers, and implications for the Advanced-LIGO era[J]. Mon. Not. R. Astron. Soc., 2015, 448:2210-2223
|
[28] |
EVANS P, FRIDRIKSSON J K, GEHRELS N, et al. Swift follow-up observations of candidate gravitational-wave transient events[J]. Astrophys. J., 2012, 203:28-42
|
[29] |
EVANS P, OSBORNE J P, BEARDMORE A P, et al. 1SXPS: A deep Swift X-ray telescope point source catalog with light curves and spectra[J]. Astrophys. J., 2014, 210(Supp.):8-32
|
[30] |
INOUE S, GRANOT J, O'BRIEN P T, et al. Gamma-ray burst science in the era of the Cherenkov Telescope Array[J]. Astropart. Phys., 2013, 43:252-275
|
[31] |
ANGEL J R P. Lobster eyes as X-ray telescopes[J]. Astrophys. J., 1979, 233:364-373
|
[32] |
FRASER G W, CARPENTERA J D, ROTHERY D A, et al. The Mercury Imaging X-ray Spectrometer (MIXS) on bepicolombo[J]. Planet. Space Sci., 2010, 58:79-95
|
[33] |
YUAN W, ZHANG C, FENG H, et al. Einstein Probe-a small mission to monitor and explore the dynamic X-ray Universe[C]//Swift: 10 Years of Discovery. Trieste: SISSA, 2015:1-9
|
[34] |
ZHAO D, ZHANG C, YUAN W, et al. Ray tracing simulations for the wide-field X-ray telescope of the Einstein Probe mission based on Geant4 and XRTG4[C]//SPIE, Proc. SPIE 9144, Space Telescopes and Instrumentation 2014: Ultraviolet to Gamma Ray 91444E. DOI: 10.1117/12.2055434
|