Volume 36 Issue 2
Mar.  2016
Turn off MathJax
Article Contents
WANG Song, TANG Xiaojin, WU Zhancheng, YI Zhong. Comparative Analysis of Two Representative Computation Models for Deep Dielectric Charging[J]. Chinese Journal of Space Science, 2016, 36(2): 202-208. doi: 10.11728/cjss2016.02.202
Citation: WANG Song, TANG Xiaojin, WU Zhancheng, YI Zhong. Comparative Analysis of Two Representative Computation Models for Deep Dielectric Charging[J]. Chinese Journal of Space Science, 2016, 36(2): 202-208. doi: 10.11728/cjss2016.02.202

Comparative Analysis of Two Representative Computation Models for Deep Dielectric Charging

doi: 10.11728/cjss2016.02.202
  • Received Date: 2015-03-10
  • Rev Recd Date: 2015-11-06
  • Publish Date: 2016-03-15
  • It is of great importance to analyze the deep dielectric charging for spacecraft using computer simulation. The general methodology is as follows. The first step is to get the charge deposition in dielectric through particle transport simulation, and then to compute the charged electric potential and electric fields according to the potential computation model. In the preliminary stage, researchers usually employed the RIC model or its improved versions for analysis, whereas the simplified model based on current conservation law has played the dominant role in recent years. In order to study the equivalence between these two classical models, the computation method for each model is presented with verification by comparing the results of a benchmark model with the published results. Then, theoretical analysis is made that the simplified model is a further simplified version of the RIC model, and they can lead to the same charging outcome providing the same total conductivity is used. Finally, through computing the charging process of a dielectric panel with three different grounding conditions under GEO severe electron radiation, sufficient simulation verifications are provided. The obtained conclusions can make beneficial reference for the evaluation of satellite deep dielectric charging.

     

  • loading
  • [1]
    WRENN G L. Conclusive evidence for internal dielectric charging anomalies on geosynchronous communications spacecraft[J]. J. Spacecr. Rockets, 1995, 32(3):514-520
    [2]
    HUANG Jianguo, CHEN Dong. A study of characteristics for deep dielectric charging on satellites[J]. Acta Phys. Sin., 2004, 53(3):961-966 (黄建国, 陈东. 卫星中介质深层充电特征研 究[J]. 物理学报, 2004, 53(3):961-966)
    [3]
    LABONTE K. Radiation-induced charge dynamics in dielectrics[J]. IEEE Trans. Nucl. Sci., 1982, 29(1):1650-1653
    [4]
    SESSLER G M. Charge dynamics in irradiated polymers[J]. IEEE Trans. Electr. Insul., 1992, 27(5):961-973
    [5]
    FERREIRA G F L, FIGUEIREDO De M T. Currents and charge profiles in electron beam irradiated samples under an applied voltage: exact numerical calculation and Sessler's conductivity approximation[J]. IEEE Trans. Dielectr. Electr. Insul., 2003, 10(1):137-147
    [6]
    SESSLER G M, FIGUEIREDO M T, FERREIRA G F L. Models of charge transport in electron-bream irradiated insulators[J]. IEEE Trans. Dielectr. Electr. Insul., 2004, 11:192-202
    [7]
    QUAN Ronghui, ZHANG Zhenlong, HAN Jianwei, et al. Phenomenon of DEE charging in polymer under electron beam irradiation[J]. Acta Phys. Sin., 2009, 58(2):1205-1211 (全荣辉, 张振龙, 韩建伟, 等. 电子辐照下聚合物介质深层充电现象研究[J]. 物理 学报, 2009, 58(2):1205-1211)
    [8]
    ZHANG Jian, XIE Aigen, WANG Ling, et al. Numerical calculation and research of the effects of secondary emission characteristics on surface charging[J]. Chin. J. Space Sci., 2012, 32(6):862-868(张健, 谢爱根, 王玲, 等. 材料次级电子发射特性对表面充 电影响的数值计算研究[J]. 空间科学学报, 2012, 32(6):862-868
    [9]
    RODGERS D J, RYDEN K A, WRERM G L. Fitting of material parameters for DICTAT internal dielectric charging simulations using DICFIT[J]. Mater. Space Envir., 2003, 540(1):609-613
    [10]
    JUN I, GARRETT H B, KIM W. Review of an internal charging code, NUMIT[J]. IEEE Trans. Plasma Sci., 2008, 36(5):2467-2472
    [11]
    TANG Fule. Geant4-based Numerical Simulation of Internal Charging Protection for Spacecraft Dielectric[D]. Jinan: Shandong University, 2013 (唐夫乐. 基于Geant4的航天器介质抗内带电数值模拟[D]. 济南: 山东大学, 2013)
    [12]
    RODGERS D J, RYDEN K A, LATHAM P M, et al. Engineering Tools for Internal Charging: Final Report[R], ESA contract 12115/96/NL/JG(SC), 1998
    [13]
    FOWLER J F. X-ray induced conductivity in insulating materials[J]. Proc. Roy. Soc. London: Ser. A, 1956, 236: 464-480
    [14]
    WANG Song, YI Zhong, TANG Xiaojin, et al. Analysis of exposed dielectric bulk charging in GEO environment via computer simulation[J]. High Volt. Eng., 2015, 41(2):687-692 (王松, 易忠, 唐小金, 等. 地球同步轨道外露介质深层带电仿真分析[J]. 高电压技术, 2015, 41(2):687-692)
    [15]
    YANG G M, SESSLER G M. Radiation-induced conductivity in electron-beam irradiated insulating polymer films[J]. IEEE Trans. Electr. Insul., 1992, 27(1):843-848
    [16]
    QIN Xiaogang. Research on Numerical Simulation of Deep Dielectric Charging with Applications[D]. Lanzhou: University of Lanzhou, 2010 (秦晓刚. 介质深层带电数值模拟与应用研究[D]. 兰州: 兰 州大学, 2010)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(1264) PDF Downloads(1116) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return