Volume 36 Issue 3
May  2016
Turn off MathJax
Article Contents
YUAN Huanzhi, LÜ Jianyong, WANG Ming. Influence of the Dipole Tilt Angle on the Subsolar Standoff Distance and the Tail Flaring Angle of the Bow Shock[J]. Journal of Space Science, 2016, 36(3): 272-278. doi: 10.11728/cjss2016.03.272
Citation: YUAN Huanzhi, LÜ Jianyong, WANG Ming. Influence of the Dipole Tilt Angle on the Subsolar Standoff Distance and the Tail Flaring Angle of the Bow Shock[J]. Journal of Space Science, 2016, 36(3): 272-278. doi: 10.11728/cjss2016.03.272

Influence of the Dipole Tilt Angle on the Subsolar Standoff Distance and the Tail Flaring Angle of the Bow Shock

doi: 10.11728/cjss2016.03.272
  • Received Date: 2015-04-02
  • Rev Recd Date: 2015-11-28
  • Publish Date: 2016-05-15
  • The Earth's bow shock has been found to be affected by the dipole tilt angle.Based on the bow shock crossings of IMP 8,Geotail,Magion 4,and Cluster 1,quantitative analysis has been made to examine the influence of the dipole tilt angle on the subsolar standoff distance and the tail flaring angle of the bow shock by fitting the bow shock shape and location in each range of the data sets after normalizing and classifying the data sets.The results show that the subsolar standoff distance increases as the absolute value of the dipole tilt angle increases,and the negative dipole tilt angle does greater influence on the standoff distance than the positive tilt angle;the flaring angle decreases with the increasing absolute value of the dipole tilt angle;when the dipole tilt angle changes from negative to positive,the bow shock moves to Earth,meanwhile the flaring angle increases.This study make a good foundation for the bow shock model which will include the effects of the dipole tilt angle.

     

  • loading
  • [1]
    CHAO J K, WU D J, LIN C H, et al. Models for the size and shape of the Earth's magnetopause and bow shock[C]//COSPAR Colloquia series. Pergamon:COSPAR, 2002, 12:127-135
    [2]
    DMITRIEV A V, CHAO J K, WU D J. Comparative study of bow shock models using WIND and Geotail observations[J]. J. Geophys. Res., 2003, 108(A12):1464
    [3]
    FARRIS M H, RUSSELL C T. Determining the standoff distance of the bow shock:Mach number dependence and use of models[J].J. Geophys. Res., 1994, 99:17681-17689
    [4]
    VERIGIN M I, KOTOVA G A, SLAVIN J, et al. Analysis of the 3-D shape of the terrestrial bow shock by Interball/Magion 4 observations[J]. Adv. Space Res., 2001, 28(6):857-862
    [5]
    HU Huiping, LU Jianyong, ZHOU Quan, et al. Simulation of three-dimensional Earth's bow shock[J]. Chin. J. Space Sci., 2015, 35(1):1-8(胡慧萍,吕建永,周全,等.地球弓激波的三维模拟[J].空间科学学报, 2015, 35(1):1-8)
    [6]
    CHAPMAN J F, CAIRNS I H, LYON J G, et al. MHD simulations of Earth's bow shock:interplanetary magnetic field orientation effects on shape and position[J]. J. Geophys. Res.:Space Phys., 2004, 109(A4):A04215. DOI: 10.1029/2003JA010235
    [7]
    VERIGIN M, SLAVIN J A, KOTOVA G, GOMBOSI T.Planetary bow shocks:asymptotic MHD Mach cones[J]. Earth Planets Space, 2003, 55:33-38
    [8]
    PETRINEC S M, RUSSELL C T. An examination of the effect of dipole tilt angle and cusp regions on the shape of the dayside magnetopause[J]. J. Geophys. Res.:Space Phys., 1995, 100(A6):9559-9566
    [9]
    ZHOU X W, RUSSELL C T. The location of the highlatitude polar cusp and the shape of the surrounding magnetopause[J]. J. Geophys, Res., 1997, 89:11048-11052
    [10]
    TSYGANENKO N A. Modeling of twisted/warped magnetospheric configurations using the general deformation method[J]. J. Geophys. Res.:Space Phys., 1998, 103(A10):23551-23563
    [11]
    ŠAFRÁNKOVÁ J, DUŠÍK Š, NěME?EK Z. The shape and location of the high-latitude magnetopause[J]. Adv. Space Res., 2005, 36(10):1934-1939
    [12]
    BOARDSEN S A, EASTMAN T E, SOTIRELIS T, et al. An empirical model of the high-latitude magnetopause[J]. J. Geophys. Res.:Space Phys., 2000, 105(A10):23193-23219
    [13]
    LIN R L, ZHANG X X, LIU S Q, et al. A threedimensional asymmetric magnetopause model[J]. J. Geophys. Res., 2010, 115:A04207
    [14]
    LIU Z Q, LU J Y, WANG C, et al. A three-dimensional high Mach number asymmetric magnetopause model from global MHD simulation[J]. J. Geophys Res.:Space Phys., 2015, 120:5645-5666
    [15]
    MERKA J, SZABO A. Bow shock's geometry at the magnetospheric flanks[J]. J. Geophys. Res., 2004, 109(A12):A12224. DOI: 10.1029/2004JA010567
    [16]
    JELÍNEK K, NěM?CEK Z, ŠAFRÁNKOVÁ J, et al. Influence of the tilt angle on the bow shock shape and location[J]. J. Geophys. Res., 2008, 113(A5):521-532
    [17]
    FORMISANO V. Orientation and shape of the Earth's bow shock in three dimensions[J]. Planet. Space Sci., 1979, 27(9):1151-1161
    [18]
    PEREDO M, SLAVIN J A, MAZUR E, et al. Threedimensional position and shape of the bow shock and their variation with Alfvenic, sonic and magnetosonic Mach numbers and interplanetary magnetic field orientation[J]. J. Geophys. Res.:Space Phys., 1995, 100(A5):7907-7916
    [19]
    RUSSELL C T, PETRINECS M. Towards an MHD theory for the standoff distance of Earth's bow shock[J]. Geophys. Res. Lett., 1996, 23(3):309-310
    [20]
    LIU Z Q, LU J Y, KABIN K, et al. Dipole tilt control of the magnetopause for southward IMF from global magnetohydrodynamic simulations[J]. J. Geophys. Res.:Space Phys., 2012, 117(A7):282-292
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(1192) PDF Downloads(925) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return