Volume 36 Issue 4
Jul.  2016
Turn off MathJax
Article Contents
LUO Xinghong, FENG Shaobo, LI Yang. Solidification of AlCuMgZn Single Crystal in Space[J]. Chinese Journal of Space Science, 2016, 36(4): 445-449. doi: 10.11728/cjss2016.04.445
Citation: LUO Xinghong, FENG Shaobo, LI Yang. Solidification of AlCuMgZn Single Crystal in Space[J]. Chinese Journal of Space Science, 2016, 36(4): 445-449. doi: 10.11728/cjss2016.04.445

Solidification of AlCuMgZn Single Crystal in Space

doi: 10.11728/cjss2016.04.445 cstr: 32142.14.cjss2016.04.445
  • Received Date: 2015-11-10
  • Rev Recd Date: 2016-04-18
  • Publish Date: 2016-07-15
  • Gravity plays an important role in alloy solidification process and defect formation. However, it is difficult to reveal the effects of gravity and study the mechanisms through traditional ground-based solidification experiments. Under microgravity conditions, the effects of gravity on molten melt and solidification process will be significantly diminished. Therefore, in order to explore the role of gravity in dendrite growth process and solute segregation as well as solidification defect formation, by using the microgravity environment in space, and combining with ground-based comparison experiments, the dendritic morphologies, characteristics sizes as well as solute segregation and defect formation under normal gravity and microgravity of AlCuMgZn single crystal alloy are planning to be comparatively investigated during Tiangong-2 mission. In this paper, the progress of the project, such as the research contents, sample and ampoule design, space experimental scheme and main ground-based tests and results are introduced.

     

  • loading
  • [1]
    HU Zhuangqi, LIU Lirong, JIN Tao, et al. Development of the Ni-base single crystal superalloys[J]. Aeroengine, 2005, 31(3):1-7
    [2]
    WANG Lin, DONG Jianxin, YANG Chunjun, et al. Mechanisms for macro segregation freckles and their criteria[J]. Foundry Technol., 2007, 28(5):585-89
    [3]
    AL-JARBA K A, FUCHS G E. Effect of carbon additions on the as-cast microstructure and defect formation of a single crystal Ni-based superalloy[J]. Mat. Sci. Eng.: A, 2004, 373(1/2):255-267
    [4]
    BECKERMANN C, GU J P, BOETTINGER W J. Deve-lopment of a freckle predictor via Rayleigh number method for single-crystal nickel-base superalloy cas-tings[J]. Metall. Mater. Trans.: A, 2000, 31(10):2545-2557
    [5]
    MADISON J, SPOWART J, ROWENHORST D, et al. Modeling fluid flow in three-dimensional single crystal dendritic structures[J]. Acta Mater., 2010, 58(8):2864-2875
    [6]
    AUBURTIN P, WANG T, COCKCROFT S L, et al. Freckle formation and freckle criterion in superalloy cas-tings[J]. Metall. Mater. Trans.: B, 2000, 31(4):801-811
    [7]
    SUN Dongke, ZHU Mingfang, YANG Chaorong, et al. Modelling of dendritic growth in forced and natural convections[J]. Acta Phys. Sin., 2009, 58:285-291
    [8]
    ZHOU B H, JUNG H, MANGELINCK-NOEL N, et al. Comparative study of the influence of natural convection on directional solidification of Al-3.5 wt% Ni and Al-7 wt% Si alloys[J]. Adv. Space Res., 2008, 41(12):2112-2117
    [9]
    BANASZEK J, MCFADDEN S, BROWNE D J, et al. Natural convection and columnar-to-equiaxed transition prediction in a front-tracking model of alloy solidification[J]. Metall. Mater. Trans.: A, 2007, 38(7):1476-1484
    [10]
    TRIVEDI R, MIYAHARA H, MAZUMDER P, et al. Directional solidification microstructures in diffusive and convective regimes[J]. J. Cryst. Growth, 2001, 222(1/2):365-379
    [11]
    JIANG Mingwei, DU Weidong, SONG Changjiang, et al. Effects of specimen dimensions on directional solidification microstructure and interface stability of Al-4.5%Cu alloy[J]. Foundry, 2007, 56(12):1307-1309
    [12]
    ZHU C S, WANG Z P, GUI J, et al. Convection effect on dendritic growth using phase-field method[J]. China Foundry, 2010, 7(1):52-56
    [13]
    STEINBACH I. Pattern formation in constrained dendri-tic growth with solutal buoyancy[J]. Acta Mater., 2009, 57(9):2640-2645
    [14]
    TAN L J, ZABARAS N. Modeling the growth and inter-action of multiple dendrites in solidification using a level set method[J]. J. Comput. Phys., 2007, 226(1):131-155
    [15]
    YUAN L, LEE P D. Dendritic solidification under natural and forced convection in binary alloys: 2D versus 3D simu-lation[J]. Model. Simul. Mater. Sc., 2010, 18(5): 1277-1284
    [16]
    ASTA M, BECKERMANN C, KARMA A, et al. Solidification microstructures and solid-state parallels: Recent developments, future directions[J]. Acta Mater., 2009, 57(4):941-971
    [17]
    MA D X, BUHRIG-POLACZEK A. Avoiding grain defects in single crystal components by application of a heat conductor technique[J]. Int. J. Mater. Res., 2009, 100(8):1145-1151
    [18]
    YANG X L, NESS D, LEE P D, et al. Simulation of stray grain formation during single crystal seed melt-back and initial withdrawal in the Ni-base superalloy CMSX4[J]. Mat. Sci. Eng.: A, 2005, 413:571-577
    [19]
    GAO Sifeng, LIU Lin, HU Xiaowu, et al. Review of freckle defects under directional solidification of nickel-based superalloys[J]. J. Mat. Sci. Eng., 2010, 28(1):145-151
    [20]
    ZHOU Y F, LI XY, BAI S Q, et al. Comparison of space- and ground-grown Bi2Se0.21Te2.79 thermoelectric crystals[J]. J. Cryst. Growth, 2010, 312(6):775-780
    [21]
    OSTROGORSKY A G, MARIN C, VOLZ M, et al. Initial transient in Zn-doped InSb grown in microgravity[J].J. Cryst. Growth, 2009, 311(12):3243-3248
    [22]
    DE WILDE J, NAGELS E, LEMOISSON F, et al. Unconstrained growth along a ternary eutectic solidification path in Al-Cu-Ag: preparation of a MAXUS sounding rocket experiment[J]. Mat. Sci. Eng.: A, 2005, 413:514-520
    [23]
    CURRERI P A, LEE J E, STEFANESCU D M. Dendritic solidification of alloys in low gravity[J]. Metall. Trans.: A, 1988, 19 (11):2671-2676
    [24]
    YU H, TANDON K N, CAHOON J R. Solidification of hypereutectic Al-38 wt% pct Cu alloy in microgravity and in unit gravity[J]. Metall. Mater. Trans.: A, 1997, 28(5):1245-1250
    [25]
    HUANG Q, LUO X H, LI Y Y. An alloy solidification experiment conducted on Shenzhou spacecraft[J]. Adv. Space Res., 2005, 36(1):86-91
    [26]
    LUO X H, HUANG Q, LIU B D, et al. Al-Al3Ni eutectic alloy and Al/WC(Ni) composite directionally solidified under microgravity and normal gravity[J]. Adv. Space Res., 2003, 32(2):225-230
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(1274) PDF Downloads(797) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return