Citation: | LUO Xinghong, FENG Shaobo, LI Yang. Solidification of AlCuMgZn Single Crystal in Space[J]. Chinese Journal of Space Science, 2016, 36(4): 445-449. doi: 10.11728/cjss2016.04.445 |
[1] |
HU Zhuangqi, LIU Lirong, JIN Tao, et al. Development of the Ni-base single crystal superalloys[J]. Aeroengine, 2005, 31(3):1-7
|
[2] |
WANG Lin, DONG Jianxin, YANG Chunjun, et al. Mechanisms for macro segregation freckles and their criteria[J]. Foundry Technol., 2007, 28(5):585-89
|
[3] |
AL-JARBA K A, FUCHS G E. Effect of carbon additions on the as-cast microstructure and defect formation of a single crystal Ni-based superalloy[J]. Mat. Sci. Eng.: A, 2004, 373(1/2):255-267
|
[4] |
BECKERMANN C, GU J P, BOETTINGER W J. Deve-lopment of a freckle predictor via Rayleigh number method for single-crystal nickel-base superalloy cas-tings[J]. Metall. Mater. Trans.: A, 2000, 31(10):2545-2557
|
[5] |
MADISON J, SPOWART J, ROWENHORST D, et al. Modeling fluid flow in three-dimensional single crystal dendritic structures[J]. Acta Mater., 2010, 58(8):2864-2875
|
[6] |
AUBURTIN P, WANG T, COCKCROFT S L, et al. Freckle formation and freckle criterion in superalloy cas-tings[J]. Metall. Mater. Trans.: B, 2000, 31(4):801-811
|
[7] |
SUN Dongke, ZHU Mingfang, YANG Chaorong, et al. Modelling of dendritic growth in forced and natural convections[J]. Acta Phys. Sin., 2009, 58:285-291
|
[8] |
ZHOU B H, JUNG H, MANGELINCK-NOEL N, et al. Comparative study of the influence of natural convection on directional solidification of Al-3.5 wt% Ni and Al-7 wt% Si alloys[J]. Adv. Space Res., 2008, 41(12):2112-2117
|
[9] |
BANASZEK J, MCFADDEN S, BROWNE D J, et al. Natural convection and columnar-to-equiaxed transition prediction in a front-tracking model of alloy solidification[J]. Metall. Mater. Trans.: A, 2007, 38(7):1476-1484
|
[10] |
TRIVEDI R, MIYAHARA H, MAZUMDER P, et al. Directional solidification microstructures in diffusive and convective regimes[J]. J. Cryst. Growth, 2001, 222(1/2):365-379
|
[11] |
JIANG Mingwei, DU Weidong, SONG Changjiang, et al. Effects of specimen dimensions on directional solidification microstructure and interface stability of Al-4.5%Cu alloy[J]. Foundry, 2007, 56(12):1307-1309
|
[12] |
ZHU C S, WANG Z P, GUI J, et al. Convection effect on dendritic growth using phase-field method[J]. China Foundry, 2010, 7(1):52-56
|
[13] |
STEINBACH I. Pattern formation in constrained dendri-tic growth with solutal buoyancy[J]. Acta Mater., 2009, 57(9):2640-2645
|
[14] |
TAN L J, ZABARAS N. Modeling the growth and inter-action of multiple dendrites in solidification using a level set method[J]. J. Comput. Phys., 2007, 226(1):131-155
|
[15] |
YUAN L, LEE P D. Dendritic solidification under natural and forced convection in binary alloys: 2D versus 3D simu-lation[J]. Model. Simul. Mater. Sc., 2010, 18(5): 1277-1284
|
[16] |
ASTA M, BECKERMANN C, KARMA A, et al. Solidification microstructures and solid-state parallels: Recent developments, future directions[J]. Acta Mater., 2009, 57(4):941-971
|
[17] |
MA D X, BUHRIG-POLACZEK A. Avoiding grain defects in single crystal components by application of a heat conductor technique[J]. Int. J. Mater. Res., 2009, 100(8):1145-1151
|
[18] |
YANG X L, NESS D, LEE P D, et al. Simulation of stray grain formation during single crystal seed melt-back and initial withdrawal in the Ni-base superalloy CMSX4[J]. Mat. Sci. Eng.: A, 2005, 413:571-577
|
[19] |
GAO Sifeng, LIU Lin, HU Xiaowu, et al. Review of freckle defects under directional solidification of nickel-based superalloys[J]. J. Mat. Sci. Eng., 2010, 28(1):145-151
|
[20] |
ZHOU Y F, LI XY, BAI S Q, et al. Comparison of space- and ground-grown Bi2Se0.21Te2.79 thermoelectric crystals[J]. J. Cryst. Growth, 2010, 312(6):775-780
|
[21] |
OSTROGORSKY A G, MARIN C, VOLZ M, et al. Initial transient in Zn-doped InSb grown in microgravity[J].J. Cryst. Growth, 2009, 311(12):3243-3248
|
[22] |
DE WILDE J, NAGELS E, LEMOISSON F, et al. Unconstrained growth along a ternary eutectic solidification path in Al-Cu-Ag: preparation of a MAXUS sounding rocket experiment[J]. Mat. Sci. Eng.: A, 2005, 413:514-520
|
[23] |
CURRERI P A, LEE J E, STEFANESCU D M. Dendritic solidification of alloys in low gravity[J]. Metall. Trans.: A, 1988, 19 (11):2671-2676
|
[24] |
YU H, TANDON K N, CAHOON J R. Solidification of hypereutectic Al-38 wt% pct Cu alloy in microgravity and in unit gravity[J]. Metall. Mater. Trans.: A, 1997, 28(5):1245-1250
|
[25] |
HUANG Q, LUO X H, LI Y Y. An alloy solidification experiment conducted on Shenzhou spacecraft[J]. Adv. Space Res., 2005, 36(1):86-91
|
[26] |
LUO X H, HUANG Q, LIU B D, et al. Al-Al3Ni eutectic alloy and Al/WC(Ni) composite directionally solidified under microgravity and normal gravity[J]. Adv. Space Res., 2003, 32(2):225-230
|