Volume 36 Issue 4
Jul.  2016
Turn off MathJax
Article Contents
HU Kaixin, HE Meng, CHEN Qisheng. Theoretical Analysis for the Elastic Instability of Thermocapillary Liquid Layers for Upper Convected Maxwell (UCM) Fluid[J]. Chinese Journal of Space Science, 2016, 36(4): 487-491. doi: 10.11728/cjss2016.04.487
Citation: HU Kaixin, HE Meng, CHEN Qisheng. Theoretical Analysis for the Elastic Instability of Thermocapillary Liquid Layers for Upper Convected Maxwell (UCM) Fluid[J]. Chinese Journal of Space Science, 2016, 36(4): 487-491. doi: 10.11728/cjss2016.04.487

Theoretical Analysis for the Elastic Instability of Thermocapillary Liquid Layers for Upper Convected Maxwell (UCM) Fluid

doi: 10.11728/cjss2016.04.487 cstr: 32142.14.cjss2016.04.487
  • Received Date: 2015-11-10
  • Rev Recd Date: 2016-05-09
  • Publish Date: 2016-07-15
  • The linear stability of thermocapillary liquid layers for Upper Convected Maxwell (UCM) fluid is investigated. Elastic instability is found. The rate of perturbation growth increases with the wave number. For UCM fluid, the critical Marangoni number does not exist, which is different from Newtonian fluid. Instead, a critical wave number is found above which unstable elastic waves appear. The critical wave number decreases with elastic number and Marangoni number. When elastic number approaches zero, the fluid becomes Newtonian fluid with the critical wave number tending to infinity. The wave speed of elastic wave stays constant for different wave numbers and propagating directions. However, the growth rate reaches its maximum in a specific direction. Energy analysis shows the work done by perturbation stress contributes most to the perturbation energy of elastic wave.

     

  • loading
  • [1]
    CHEN J J, LIN J D. Thermocapillary effect on drying of a polymer solution under non-uniform radiant heating[J]. Int. J. Heat Mass Trans., 2000, 43(12):2155-2175
    [2]
    TOUSSAINT G, BODIGUEL H, DOUMENC F, et al. Experimental characterization of buoyancy and surface tension-driven convection during the drying of a polymer solution[J]. Int. J. Heat Mass Trans., 2008, 51(17):4228-4237
    [3]
    DEBROY T, DAVID S A. Physical processes in fusion welding[J]. Rev. Mod. Phys., 1995, 67(1):85-112
    [4]
    MILLS K C, KEENE B J, BROOKS R F, et al. Marangoni effects in welding[J]. Phil. Trans. R. Soc. Lond. A, 1998, 356:911-925
    [5]
    PIERCE S W, BURGARDT P, OLSON D L. Thermocapillary and arc phenomena in stainless steel welding[J]. Weld. J., 1999, 78:45-52
    [6]
    DUFFAR T. Crystal Growth Processes Based on Capillarity: Czochralski, Floating Zone, Shaping and Crucible Techniques[M]. West Sussex: John Wiley & Sons, 2010
    [7]
    OSTRACH S. Low-gravity fluid flows[J]. Ann. Rev. Fluid Mech., 1982, 14(1):313-345
    [8]
    DAVIS S H. Thermocapillary instabilities[J]. Ann. Rev. Fluid Mech., 1987, 19(1):403-435
    [9]
    SCHATZ M F, Neitzel G P. Experiments on thermocapillary instabilities[J]. Ann. Rev. Fluid Mech., 2001, 33(1):93-127
    [10]
    SMITH M K, DAVIS S H. Instabilities of dynamic thermocapillary liquid layers Part 1. Convective instabilities[J]. J. Fluid Mech., 1983, 132:119-144
    [11]
    CHAN C L, CHEN C F. Effect of gravity on the stability of thermocapillary convection in a horizontal fluid layer[J]. J. Fluid Mech., 2010, 647:91-103
    [12]
    BAUER F. Heat transport in an infinitely long Non-Newtonian liquid bridge due to Marangoni convection[J]. Heat Mass Trans., 1982, 16(4):229-235
    [13]
    NAÏ MI M, HASNAOUI M, PLATTEN J K. Marangoni convection of non-Newtonian power law fluids in a shallow rectangular cavity[J]. Eng. Comput., 2000, 17(6):638-668
    [14]
    CHEN C H. Marangoni effects on forced convection of power-law liquids in a thin film over a stretching surface[J]. Phys. Lett.: A, 2007, 370(1):51-57
    [15]
    ALLOUI Z, VASSEUR P. Onset of Marangoni convection and multiple solutions in a power-law fluid layer under a zero gravity environment[J]. Int. J. Heat Mass Trans., 2013, 58(1):43-52
    [16]
    TROUGHTON M J. Handbook of Plastics Joining: A Practical Guide[M]. New York: William Andrew, 2008
    [17]
    ROTHEISER J. Joining of Plastics[M]. Munich: Hanser, 1999
    [18]
    GREWELL D, BENATAR A. Welding of plastics: Fundamentals and new developments[J]. Int. Polym. Proc., 2007, 22(1):43-60
    [19]
    YAMAMURA M, WAJIMA S, MAWATARI Y, et al. Nonuniform thinning of polymeric coatings under Mara-ngoni stress[J]. J. Chem. Eng. Jpn., 2010, 43(1):40-45
    [20]
    DOWNEY J P, POJMAN J A. Polymer Research in Microgravity: Polymerization and Processing[M]. Washington D C: American Chemical Society, 2001
    [21]
    DEE G T, SAUER B B. The surface tension of polymer liquids[J]. Adv. Phys., 1998, 47(2):161-205
    [22]
    BIRD R B, ARMSTRONG R C, HASSAGER O. Dynamics of Polymeric Liquids Vol.1: Fluid Mechanics[M]. New York: John Wiley & Sons, 1987
    [23]
    HU K X, PENG J, ZHU K Q. The linear stability of plane Poiseuille flow of Burgers fluid at very low Reynolds numbers[J]. J. Non-Newton. Fluid Mech., 2012, 167-168:87-94
    [24]
    HU K X, PENG J, ZHU K Q. Linear stability of plane creeping Couette flow for Burgers fluid[J]. Acta Mech. Sin., 2013, 29:12-23
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(1464) PDF Downloads(709) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return