Volume 36 Issue 4
Jul.  2016
Turn off MathJax
Article Contents
LI Jiachao, LIANG Guozhu. Numerical Simulation of Phase Change and Heat Transfer in Cryogenic Tank under the Ground Microgravity Condition[J]. Chinese Journal of Space Science, 2016, 36(4): 513-519. doi: 10.11728/cjss2016.04.513
Citation: LI Jiachao, LIANG Guozhu. Numerical Simulation of Phase Change and Heat Transfer in Cryogenic Tank under the Ground Microgravity Condition[J]. Chinese Journal of Space Science, 2016, 36(4): 513-519. doi: 10.11728/cjss2016.04.513

Numerical Simulation of Phase Change and Heat Transfer in Cryogenic Tank under the Ground Microgravity Condition

doi: 10.11728/cjss2016.04.513 cstr: 32142.14.cjss2016.04.513
  • Received Date: 2015-11-10
  • Rev Recd Date: 2016-05-15
  • Publish Date: 2016-07-15
  • In order to predict the state of spacecraft cryogenic propellant heated on-orbit, a 2D axial Volume-of-Fluid (VOF) computational fluid dynamic model including liquid and gas is established, and the model of phase change is based on the theory which put forward by Lee. As simulation experiments used the liquid nitrogen tank, this article used the liquid nitrogen tank as the object of numerical simulation. The results show that, comparing with the ground condition, the rising rate of the ullage pressure and the pressure value are smaller under the microgravity condition, and the lower the level of gravity, the smaller the rising rate of the ullage pressure and the pressure value. The position and shape of the ullage changes dynamically with surface tension which varies with liquid temperature and the temperature differences in liquid nitrogen zone increase with the gravity reducing.

     

  • loading
  • [1]
    AYDELOTT J C. Effect of Gravity on Self-pressurization of Spherical Liquid-hydrogen Tankage[R]. NASA TN D-4286, 1967
    [2]
    PUROHIT G P, VU C C, DHIR V K. Transient lumped capacity thermodynamic model of satellite propel-lant tanks in micro-gravity[C]//37th Aerospace Sciences Meeting and Exhibit. Reno: AIAA, 1999
    [3]
    PANZARELLA C H, KASSEMI M. Self-pressurization of large spherical cryogenic tanks in space[J]. J. Spacecraft Rockets, 2005, 42(2):299-308
    [4]
    PANZARELLA C, PLACHTA D, KASSEMI M. Pressure control of large cryogenic tanks in microgravity[J]. Cryogenics, 2004, 44(6):475-483
    [5]
    VENKAT S, SHERIF S A. Self-pressurization and thermal stratification in a liquid hydrogen tank under var-ying gravity conditions[C]//Proceedings of the 42nd AIAA Aerospace Sciences Meeting and Exhibit. Reno, Nevada: AIAA, 2004:10844-54
    [6]
    CHEN L, LIANG G. Simulation research of vaporization and pressure variation in a cryogenic propellant tank at the launch site[J]. Microgravity Sci. Technol., 2013, 25(4):203-211
    [7]
    CHEN Liang, LIANG Guozhu, WEI Yi, et al. CFD simu-lation of cryogenic propellant tank pressure variation[J]. J. Aerospace Power, 2015, 30(6):1470-1477(陈亮, 梁国柱, 魏一, 等. 低温推进剂贮箱压力变化的CFD仿真[J]. 航空动力学报, 2015, 30(6):1470-1477)
    [8]
    WEI Yanming, PAN Hailin. The microgravity drop tower verification of surface tension tank-state equilibrium and reset of propellant[J]. Aerospace Control, 1998, 16(3):23-29(魏延明, 潘海林. 表面张力贮箱的微重力实验验证静平衡与重定位[J]. 航天控制, 1998, 16(3):23-29)
    [9]
    LI Zhangguo, LIU Qiusheng, JI Yan, et al. Numerical simulation of liquid-vapor interface tracking in tank of spacecraft[J]. Chin. J. Space Sci., 2008, 28(1):69-73(李章国, 刘秋生, 纪岩, 等. 航天器贮箱气液自由界面追踪数值模拟[J]. 空间科学学报, 2008, 28(1):69-73)
    [10]
    LIU Zhaomiao, ZHAO Tingting, SHEN Feng. The influence of gravity and contact angle of the liquid flow in the surface tension tank[J]. Chin. J. Theor. Appl. Mech., 2015, 47(3):430-440(刘赵淼, 赵婷婷, 申峰. 重力和接触角对表面张力贮箱内液体流动的影响[J]. 力学学报, 2015, 47(3):430-440)
    [11]
    ANSYS Incorporation. Fluent theory guide[EB/OL].[2010-04-05] https://su-ppo-rt.ansys.com/2010-04-05/2010
    [12]
    WANG Lei, LI Yangzhong, LI Cui, et al. Numerical study on temperature distribution of tank pressurization process of liquid rocket during outflow[J]. J. Aerospace Power, 2011, 26(9):1893-1899(王磊, 厉彦忠, 李翠, 等. 液体火箭贮箱增压排液过程温度场数值研究[J]. 航空动力学报, 2011, 26(8):1893-1899)
    [13]
    CHEN Guobang, HUANG Yonghua, BAO Rui. Cryogenic Fluid Thermophysical Properties[M]. Beijing: National Defense Industry Press, 2006:190-200(陈国邦, 黄永华, 包锐. 低温流体热物理性质[M]. 北京: 国防工业出版社, 2006:190-200)
    [14]
    SUN Dongliang, XU Jinliang, WANG Li. A vapor-liquid phase change model for two-phase boiling and condensation[J]. J. Xi'an Jiaotong Univ., 2012, 46(7):7-11(孙东亮, 徐进良, 王丽. 求解两相蒸发和冷凝问题的气液相变模型[J]. 西安交通大学学报, 2012, 46(7):7-11)
    [15]
    XU Jiyun. Boiling Heat Transfer and Gas Liquid Two-phase Flow[M]. Beijing: Atomic Energy Press, 2001:208-220(徐济鋆. 沸腾传热与气液两相流[M]. 北京: 原子能出版社, 2001:208-220)
    [16]
    STARK J A, BRADSHOW R D, BLATT M H. Low-g Fluid Behavior Technology Summaries[R]. NASA-CR-134746, 1974
    [17]
    GHIAASIAAN S M. Two-phase Flow, Boiling, and Condensation in Conventional and Miniature Systems[M]. Cambridge: Cambridge University Press, 2007
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(1435) PDF Downloads(966) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return