Volume 36 Issue 4
Jul.  2016
Turn off MathJax
Article Contents
CAI Weiming, JIN Jing, CHEN Haiying. Effect of gravity on growth of plant cells[J]. Chinese Journal of Space Science, 2016, 36(4): 552-556. doi: 10.11728/cjss2016.04.552
Citation: CAI Weiming, JIN Jing, CHEN Haiying. Effect of gravity on growth of plant cells[J]. Chinese Journal of Space Science, 2016, 36(4): 552-556. doi: 10.11728/cjss2016.04.552

Effect of gravity on growth of plant cells

doi: 10.11728/cjss2016.04.552 cstr: 32142.14.cjss2016.04.552
  • Received Date: 2015-11-10
  • Rev Recd Date: 2016-04-21
  • Publish Date: 2016-07-15
  • In this review, the biological effects of gravity change on plant cells based on the data obtained from both ground-based research and space experiment on board the Chinese spaceship Shenzhou-8 are discussed. These data demonstrate the impact of direction and intensity changes of gravity on cell wall metabolism during plant gravitropism and cells in the state of weightlessness. The maintaining of cell shape requires the balance between cell wall rigid and cell turgor pressure is assumed. When the turgor pressure is greater than the rigid, the balance is broken which may lead to increased cell volume. Therefore the change of gravity may affect the growth of cells through the influence of the balance between cell wall rigidity and cell turgor pressure.

     

  • loading
  • [1]
    PERBAL G, DRISS-ECOLE D. Mechanotransduction in gravisensing cells[J]. Trends Plant Sci., 2003, 8:498-504
    [2]
    SIEVERS A. Gravity sensing mechanisms in plant cells[J]. ASGSB Bull., 1991, 4:43-50
    [3]
    CAI W M, BRAUN M, SIEVERS A. Displacement of sta-toliths in Chara rhizoids during horizontal rotation on clinostats[J]. Acta Biolog. Exp. Sin., 1997, 30:147-155
    [4]
    BELYAVSKAYA N A. The function of calcium in plant graviperception[J]. Adv. Space Res., 1992, 12:83-91
    [5]
    JOO J H, BAE Y S, LEE J S. Role of auxin-induced reactive oxygen species in root gravitropism[J]. Plant Physiol., 2001, 126:1055-1060
    [6]
    BOURGEADE P, BOYER N. Plasma-membrane H+-atpase activity in response to mechanical stimulation of bryonia-dioica internodes[J]. Plant Physiol. Biochem., 1994, 32:661-668
    [7]
    STROHM A K, BALDWIN K L, MASSON P H. Multiple roles for membrane-associated protein trafficking and signaling in gravitropism[J]. Front Plant Sci., 2012, 3:274
    [8]
    MONSHAUSEN G B, HASWELL E S. A force of nature: molecular mechanisms of mechanoperception in plants[J]. J. Exp. Botany, 2013, 64:4663-4680
    [9]
    HU X, NEILL S J, TANG Z, et al. Nitric oxide mediates gravitropic bending in soybean roots[J]. Plant Physiol., 2005, 137:663-670
    [10]
    CUI D Y, NEILL S J, TANG Z C, et al. Gibberellin-regulated XET is differentially induced by auxin in rice leaf sheath bases during gravitropic bending[J]. J. Exp. Botany, 2005, 56:1327-1334
    [11]
    HU L, MEI Z, ZANG A, et al. Microarray analyses and comparisons of upper or lower flanks of rice shoot base preceding gravitropic bending[J]. PLoS One. 2013, 8:e74646
    [12]
    SHAN C, MEI Z L, DUAN J L, et al. OsGA2ox5, a gibberellin metabolism enzyme, is involved in plant growth, the root gravity response and salt stress[J]. Plos One, 2014, 9:(1):e87110
    [13]
    HU L W, CUI D Y, NEILL S, et al. OsEXPA4 and OsRWC3 are involved in asymmetric growth during gravitropic bending of rice leaf sheath bases[J]. Physiol. Plant., 2007, 130:560-571
    [14]
    HU L W, CUI D Y, ZANG A P, et al. Auxin-regulated OsRGP1 and OsSuS are involved in gravitropic bending of rice shoot bases[J]. J. Molec. Cell Biol., 2009, 42:27-34
    [15]
    LI Guowei. Study on the Functions of Rice Aquaporins and Their Response to Various Abiotic Stresses[D]. Shanghai: Institute of Plant Physiology and Ecology, SIBS, CAS, 2008(李国卫. 水稻水孔蛋白的功能及其对逆境胁迫的响应[D]. 上海: 中国科学院上海生命科学研究院植物生理生态研究所, 2008)
    [16]
    LIN W, PENG Y, LI G, et al. Isolation and functional characterization of PgTIP1, a hormone-autotrophic cells-specific tonoplast aquaporin in ginseng[J]. J. Exp. Bo-tany, 2007, 58:947-956
    [17]
    JIN J, CHEN H Y, CAI W M. Growth of rice cells in Shenzhou-8 under microgravity and transcriptome analysis[J]. Manned Spaceflight, 2014, 5(20):480-485(金晶, 陈海莹, 蔡伟明. 神舟八号飞船实时水稻细胞培育及表达谱芯片分析[J]. 载人航天. 2014, 5(20):480-485)
    [18]
    JIN J, CHEN H Y, CAI W M. Transcriptome analysis of oryza sativa calli under microgravity[J]. Microgravity Sci. Technol., 2015, 27:437-453
    [19]
    HOSON T, SOGA K, WAKABAYASHI K, et al. Growth and cell wall changes in rice roots under microgravity conditions in space[J]. Biol. Sci. Space, 2002, 16:171-172
    [20]
    HOSON T, SOGA K, MORI R, et al. Stimulation of elongation growth and cell wall loosening in rice coleoptiles under microgravity conditions in space[J]. Plant Cell Physiol., 2002, 43:1067-1071
    [21]
    HOSON T, SOGA K, MORI R, et al. Cell wall changes involved in the automorphic curvature of rice coleoptiles under microgravity conditions in space[J]. J. Plant Res., 2004, 117:449-455
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(2142) PDF Downloads(834) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return