Volume 36 Issue 6
Nov.  2016
Turn off MathJax
Article Contents
SUN Luyuan. Influence of Convection Effects of Solar Wind Speed on CME Transit Time[J]. Chinese Journal of Space Science, 2016, 36(6): 828-836. doi: 10.11728/cjss2016.06.828
Citation: SUN Luyuan. Influence of Convection Effects of Solar Wind Speed on CME Transit Time[J]. Chinese Journal of Space Science, 2016, 36(6): 828-836. doi: 10.11728/cjss2016.06.828

Influence of Convection Effects of Solar Wind Speed on CME Transit Time

doi: 10.11728/cjss2016.06.828 cstr: 32142.14.cjss2016.06.828
  • Received Date: 2015-07-08
  • Rev Recd Date: 2016-02-15
  • Publish Date: 2016-11-15
  • Based on the experiential predicting model, 52 CME events which cause geomagnetic storms Dst< -50nT, and 10 CME events which cause significant geomagnetic storms (Dst< -200nT) in 1996-2007 are selected, and mix with the observation data of interplanetary solar wind and ICME that are collected by ACE satellite at 1AU, convection effects of ambient solar wind speed on the CME transit time from the Sun to the Earth are analyzed. The results show that significant improvement on the predicting transit time of CME events after taking the convection effects into account has been obtained. For the 52 CME events of Dst< -50nT, the prediction standard difference is reduced from 16.5 to 11.4 hours, and the prediction error is less than 15 hours for 68% of these events. For the 10 CME events (Dst< -200nT), the prediction standard difference is reduced from 10.6 to 6.5 hours. Furthermore, the prediction error of 6 events among these 10 events is less than 5 hours. The study identifies the importance of convection effects of solar wind speed on the prediction of CME transit time.

     

  • loading
  • [1]
    LIU Zhenxing. Space Physics[M]. Harbin: Harbin Industry Press, 2005:342-352(刘振兴. 太空物理学[M]. 哈尔滨: 哈尔滨工业大学出版社, 2005:342-352)
    [2]
    SRIVASTAVA N, VENKATAKRISHNAN P. Relationship between CME speed and geomagnetic stormintensity[J]. J. Geophys. Res., 2002, 29(9):1-1-1-4
    [3]
    SRIVASTAVA N, VENKATAKRISHNAN P. Solar and interplanetary sources of major geomagnetic storms during 1996-2002[J]. J. Geophys. Res., 2004, 109: A10103.DOI: 10.1029/2003JA010175
    [4]
    GOPALSWAMY N, LARA A, LEPPING R P. Interplanetary acceleration of coronal mass Ejections[J]. Geophys. Res. Lett., 2000, 27(2):145-148
    [5]
    GOPALSWAMY N, LARA A, YASHIRO S, et al. Predicting the 1AU arrival times of coronal mass ejections[J]. J. Geophys. Res., 2001, 106(A12):29207-29217
    [6]
    GOPALSWAMY N, LARA A, MANOHARAN P K, et al. An empirical model to predict the 1AU arrival of interplanetary shocks[J]. Adv. Space Res., 2005, 36:2289-2294
    [7]
    WANG Y M, YE P Z, WANG S, et al. A statistical study on the geoeffectiveness of Earth-directed coronal mass ejections from March 1997 to December 2000[J]. J. Geophys. Res., 2002, 107(A11):SSH 2-1SSH 2-9
    [8]
    WANG Y M, YE P Z, WANG S, et al. An interplanetary cause of large geomagnetic storms: fast forward shock over taking preceding magnetic cloud[J]. J. Geophys. Res., 2003, 30(13):33
    [9]
    WANG Y M, XUE X H, SHEN C L, et al. Impact of major coronal mass ejections on geo-space during 2005 September 7-13[J]. Astrophys. J., 2006, 646:625-633
    [10]
    MANOHARAN P K, GOPALSWAMY N, YASHIRO S, et al. Influence of coronal mass ejection interaction on propagation of interplanetary shocks[J]. J. Geophys. Res., 2004, 109:A06109. DOI: 10.1029/2003JA010300
    [11]
    SCHWENN R, DAL LAGO A, HUTTUNEN E, GONZALEZ W D. The association of coronal mass ejections with their effects near the Earth[J]. Ann. Geophys., 2005, 23(3):1033-1059
    [12]
    VRSNAK B, GOPALSWAMY N. Influence of aerodynamic drag on the motion of interplanetary ejecta[J]. J. Geophys. Res., 2002, 107(A2):SSH 2-1-SSH 2-6
    [13]
    ZHANG J, DERE K P, HOWARD R A, et al. Identification of solar sources of major geomagnetic storms between 1996 and 2000[J]. Astrophys. J., 2003, 582:520-533
    [14]
    ZHAO XINHUA. Statistical Analysis on the Solar-terrestrial Transients and Comprehensive Research on the Related Prediction Methods[D]. Beijing: Graduate University of Chinese Academy of Sciences, 2007
    [15]
    WEI F S, DRYER M. Propagation of solar flare-associated interplanetary shock waves in the heliospheric meridional plane[J]. Solar Phys., 1991, 132:373-394
    [16]
    WEI F S, FENG X S, XU Y, et al. Prediction tests by using ISF method for the geomagnetic disturbances[J]. Adv. Space Res., 2005, 36(12):2363-2367
    [17]
    OWENS M, CARGILL P. Predictions of the arrival time of coronal mass ejections at 1AU: an analysis of the causes of errors[J]. Ann. Geophys., 2004, 22:661-671
    [18]
    XIE Y Q, WEI F S, FENG X S, et al. Prediction test for the two extremely strong solar storms in October 2003[J]. Solar Phys., 2006, 234(2):363-377
    [19]
    ZHAN G Y, DU A M, FENG X S, et al. Simulated (STEREO) views of the solar wind disturbances following the coronal mass ejections of 1 August 2010[J]. Solar Phys., 2014, 289(1):319-338
    [20]
    ZHAN G Y, DU A M, DU D, SUN W. Evaluation of a revised interplanetary shock prediction model: 1D CESE-HD-2 solar-wind model[J]. Solar Phys., 2014, 289(8):3159-3173
    [21]
    LUO Hao, CHEN Gengxiong, DU Aimin, et al. Influence of the initial shock speed excited by solar flares on shock arrival time prediction[J]. Chin. J. Geophys., 2011, 54(8):1945-1952(罗浩, 陈耿雄, 杜爱民, 等. 耀斑引发的激波初始速度对激波到达时间预测的影响[J]. 地球物理学报, 2011, 54(8):1945-1952)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(1511) PDF Downloads(898) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return